پیش‌نمایی خشکسالی‌های کوتاه‌مدت در ایران: تحلیل جامع بر اساس سناریوهای اجتماعی و اقتصادی مشترک (SSP)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار گروه آب و هواشناسی، دانشکده علوم جغرافیایی، دانشگاه خوارزمی تهران، تهران، ایران

2 محقق پسادکتری اقلیم‌شناسی، گروه جغرافیای طبیعی، دانشگاه تهران، تهران، ایران

3 دکتری اقلیم‌شناسی، دانشکده برنامه‌ریزی و علوم محیطی، دانشگاه تبریز، تبریز، ایران

4 محقق پسادکتری در سنجش از دور و سیستم‌های اطلاعات جغرافیایی، گروه جغرافیا، دانشکده ادبیات و علوم انسانی، دانشگاه فردوسی مشهد، مشهد، ایران

چکیده

خشکسالی یکی از بزرگ‌ترین چالش‌های زیست‌محیطی واجتماعی درسطح جهانی است که پیامدهای جدی برامنیت غذایی ومدیریت منابع آبی کشورها دارد. این پژوهش به پیش‌بینی خشکسالی‌های کوتاه‌مدت در ایران با استفاده از سناریوهای اجتماعی و اقتصادی مشترک (SSP) می‌پردازد. داده‌های 95 ایستگاه همدیدی برای دوره 1985-2014 به عنوان دوره پایه استفاده شد. پنج مدل گردش عمومی شامل GFDL-ESM4، IPSL-CM6A-LR، MPI-ESM1-2-HR و UKESM1-0-LL برای پیش‌بینی بارش به کار گرفته شدند. داده‌ها با روش کریجینگ و تصحیح اریبی پردازش شدندبرای کاهش عدم قطعیت، از همادی چندمدلی استفاده شد. نتایج نشان می‌دهدکه داده‌های همادی‌شده همخوانی قابل توجهی با داده‌های واقعی دارند، با کاهش خطاوافزایش ضریب همبستگی. مدل Ensemble عملکرد بهتری نسبت به سایر مدل‌ها داشت. تحلیل بارش در دوره پایه نشان داد که الگوهای بارش به شدت تحت تأثیر عوامل جغرافیایی و اقلیمی قرار دارند، با بارش‌های بالا در ارتفاعات زاگرس و سواحل جنوب غربی دریای خزر در ماه‌های سرد. پیش‌بینی‌ها برای دوره 2021-2040 بر اساس سناریوی SSP5-8.5 نشان‌دهنده تغییرات قابل توجهی در الگوهای بارش است. افزایش بارش در نواحی مرتفع و کرانه‌های دریای خزر پیش‌بینی شده، اما افزایش دما ممکن است اثرات مثبت را خنثی کند. کاهش بارش در بخش‌های شمال غربی و مرکزی کشور، به‌ویژه در بهار و تابستان، پیش‌بینی شده است.

کلیدواژه‌ها

موضوعات


©2025 The author(s). This is an open access article distributed under Creative Commons Attribution 4.0 International License (CC BY 4.0)

 

 

Abd-Elhamid, H. F., El-Dakak, A. M., Saleh, O. K., Zeleňáková, M., Junakova, N., Alkhalaf, I., ... & Fathy, I. (2025). Assessment of drought risks in arid regions utilizing remote sensing data and the standardized precipitation index in the context of climate change. Earth Systems and Environment, 1–20. https://doi.org/10.1007/s41748-025-00678-z
  Ahadi, M., Zeynali, B., Salahi, B., Shoja, F., Fazl Kazemi, A., Babaeian, I., & Kohi, M. (2025). Projection of future drought trends in Iran using the CMIP6 multi-model ensemble. Journal of Natural Environmental Hazards, 1-1. [In Persian] https://doi.org/10.22111/jneh.2025.50138.2075 
Akinsanola, A. A., Kooperman, G. J., Pendergrass, A. G., Hannah, W. M., & Reed, K. A. (2020). Seasonal representation of extreme precipitation indices over the United States in CMIP6 present-day simulations. Environmental Research Letters15(9), 1–12. https://doi.org/10.1088/1748-9326/abb397
Alemu, M. G., Wubneh, M. A., Worku, T. A., Womber, Z. R., & Chanie, K. M. (2023). Comparison of CMIP5 models for drought predictions and trend analysis over Mojo catchment, Awash Basin, Ethiopia. Scientific African22, e01891.  https://doi.org/10.1016/j.sciaf.2023.e01891
Alijani, B. (2011). Spatial analysis of critical daily temperature and precipitation in Iran. Journal of Applied Researches in Geographical Sciences11(20), 1–29. [In Persian]  http://jgs.khu.ac.ir/article-1-593-fa.html 
Almazroui, M., Ashfaq, M., Islam, M. N., Rashid, I. U., Kamil, S., Abid, M. A., ... & Sylla, M. B. (2021). Assessment of CMIP6 performance and projected temperature and precipitation changes over South America. Earth Systems and Environment5(2), 155–181.  https://doi.org/10.1007/s41748-021-00233-6
Ayugi, B., Dike, V., Ngoma, H., Babaousmail, H., Mumo, R., & Ongoma, V. (2021). Future changes in precipitation extremes over East Africa based on CMIP6 models. Water13(17), 2358.  https://doi.org/10.3390/w13172358
Azizi, Q., Safarrad, T., Mohammadi, H., & Faraji Sabokbar, H. A. (2016). Evaluation and comparison of precipitation reanalysis data for use in Iran. Physical Geography Research Quarterly48(1), 33–49. [In Persian] https://doi.org/10.22059/jphgr.2016.57026
Babaeian, I., Rahmatinia, A. E., Entezari, A., Baaghideh, M., Aval, M. B., & Habibi, M. (2021). Future projection of drought vulnerability over northeast provinces of Iran during 2021-2100. Atmosphere12(12), 1704.  https://doi.org/10.3390/atmos12121704
Bai, H., Xiao, D., Wang, B., Liu, D. L., Feng, P., & Tang, J. (2020). Multi-model ensemble of CMIP6 projections for future extreme climate stress on wheat in the North China Plain. International Journal of Climatology40, 21–39.  https://doi.org/10.1002/joc.6674
Bayat-Afshary, N., Danesh-Yazdi, M., & Shakeri, F. (2025). Machine learning projections of Iran's water scarcity response to climate-land use synergies. Journal of Hydrology: Regional Studies61, 102638.  https://doi.org/10.1016/j.ejrh.2025.102638
Bayatavrkeshi, M., Imteaz, M. A., Kisi, O., Farahani, M., Ghabaei, M., Al-Janabi, A. M. S., ... & Yaseen, Z. M. (2023). Drought trends projection under future climate change scenarios for Iran region. PLoS ONE18(11), e0290698.  https://doi.org/10.1371/journal.pone.0290698
Behzadi, F., Javadi, S., Yousefi, H., Hashemy Shahdany, S. M., Moridi, A., Neshat, A., ... & Maghsoudi, R. (2024). Projections of meteorological drought severity-duration variations based on CMIP6. Scientific Reports14(1), 5027.  https://doi.org/10.1038/s41598-024-55340-x
Boucher, O., Servonnat, J., Albright, A. L., Aumont, O., Balkanski, Y., Bastrikov, V., ... & Vuichard, N. (2020). Presentation and evaluation of the IPSL‐CM6A‐LR climate model. Journal of Advances in Modeling Earth Systems12(7), e2019MS002010. https://doi.org/10.1029/2019MS002010
Carrao, H., Barbosa, P., & Dos Santos, J. R. (2018). Drought assessment: A global overview. Global and Planetary Change164, 1–14.  https://doi.org/10.1016/j.gloplacha.2018.03.012
Chen, Q., Zhao, T., Hua, L., Yu, J., Wang, Y., & Xu, C. (2023). Future drought changes in China projected by the CMIP6 models: Contributions from key factors. Journal of Meteorological Research37(4), 454–468.  https://doi.org/10.1007/s13351-023-2169-8
Chen, Z., Zhou, T., Zhang, L., Chen, X., Zhang, W., & Jiang, J. (2020). Global land monsoon precipitation changes in CMIP6 projections. Geophysical Research Letters47(14), 1–9.  https://doi.org/10.1029/2019GL086902
Cook, B. I., Mankin, J. S., Marvel, K., Williams, A. P., Smerdon, J. E., & Anchukaitis, K. J. (2020). Twenty‐first century drought projections in the CMIP6 forcing scenarios. Earth's Future8(6), e2019EF001461.  https://doi.org/10.1029/2019EF001461
Elkouk, A., Amiraslani, F., & Ashraf, M. (2022). Drought risk assessment in Sub-Saharan Africa and South Asia: A comparative analysis. Environmental Science & Policy123, 58–68. https://doi.org/10.1016/j.envsci.2021.09.003
Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., & Taylor, K. E. (2016). Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geoscientific Model Development9(5), 1937–1958.  https://doi.org/10.5194/gmd-9-1937-2016
Farahmand, A., & Agha Kouchak, A. (2015). A standardized approach for drought monitoring. Earth System Science Data7(1), 1–9.  https://doi.org/10.5194/essd-7-1-2015
Ghaemi, A., Hashemi Monfared, S. A., Bahrpeyma, A., Mahmoudi, P., & Zounemat-Kermani, M. (2024). Spatiotemporal variation of projected drought characteristics in Iran under climate change scenarios using CMIP5-CORDEX product. Journal of Water and Climate Change15(3), 1054–1075.  https://doi.org/10.2166/wcc.2024.468
Hamidianpour, M., & Shoja, F. (2022). An introduction to methods and techniques of climate and climate change modeling. Zahedan Press. [In Persian] https://doi.org/10.22034/jtd.2023.380876.2725
Kahil, M. T., Dinar, A., & Albiac, J. (2015). Modeling water scarcity and droughts for policy adaptation to climate change in arid and semiarid regions. Journal of Hydrology522, 95–109.  https://doi.org/10.1016/j.jhydrol.2014.12.042
Kamangar, M., Ahmadi, M., Rabiei-Dastjerdi, H., & Hazbavi, Z. (2025). Ensemble modeling of extreme seasonal temperature trends in Iran under socio-economic scenarios. Natural Hazards121(2), 1265-1288. https://doi.org/10.1007/s11069-024-06830-8
Kawai, H., Yukimoto, S., Koshiro, T., Oshima, N., Tanaka, T., Yoshimura, H., & Nagasawa, R. (2019). Significant improvement of cloud representation in the global climate model MRI-ESM2. Geoscientific Model Development12(7), 2875–2897.  https://doi.org/10.5194/gmd-12-2875-2019
Khan, A. J., Koch, M., & Tahir, A. A. (2020). Impacts of climate change on the water availability, seasonality and extremes in the Upper Indus Basin (UIB). Sustainability12(4), 1283.  https://doi.org/10.3390/su12041283
Khazaei, M. R. (2025). Projected changes to drought characteristics in Tehran under CMIP6 SSP-RCP climate change scenarios. Heliyon11(2), e41811.  https://doi.org/10.1016/j.heliyon.2025.e41811
Khoorani, A., Balaghi, S., & Mohammadi, F. (2024). Projecting drought trends and hot spots across Iran. Natural Hazards120(11), 9489–9502.  https://doi.org/10.1007/s11069-024-06574-5
Khosravi, Y., & Ouarda, T. B. (2025). Drought risks are projected to increase in the future in central and southern regions of the Middle East. Communications Earth & Environment6(1), 384.  https://doi.org/10.1038/s43247-025-02359-1
Lanen, H. A. J., Van Lanen, H. A. J., & Heggen, B. J. (2007). Drought and its relationship to climate change. Global and Planetary Change59(3–4), 157–168.  https://doi.org/10.1016/j.gloplacha.2007.04.003
Li, S. Y., Miao, L. J., Jiang, Z. H., Wang, G. J., Gnyawali, K. R., Zhang, J., ... & Li, C. (2020). Projected drought conditions in Northwest China with CMIP6 models under combined SSPs and RCPs for 2015-2099. Advances in Climate Change Research11(3), 210–217.  https://doi.org/10.1016/j.accre.2020.09.003
Li, Z., Liu, T., Huang, Y., Peng, J., & Ling, Y. (2022). Evaluation of the CMIP6 precipitation simulations over global land. Earth's Future10(8), e2021EF002500.  https://doi.org/10.1029/2021EF002500
Lu, J., Carbone, G. J., & Grego, J. M. (2019). Uncertainty and hotspots in 21st century projections of agricultural drought from CMIP5 models. Scientific Reports9(1), 4922.  https://doi.org/10.1038/s41598-019-41196-z
Masoudian, A., & Kaviani, M. (2008). Climatology of Iran. University of Isfahan Press. [In Persian]
Müller, W. A., Jungclaus, J. H., Mauritsen, T., Baehr, J., Bittner, M., Budich, R., ... & Marotzke, J. (2018). A higher‐resolution version of the max planck institute earth system model (MPI‐ESM1. 2‐HR). Journal of Advances in Modeling Earth Systems10(7), 1383-1413. https://doi.org/10.1029/2017MS001217
Nasrollahi, N., AghaKouchak, A., Cheng, L., Damberg, L., Phillips, T. J., Miao, C., ... & Sorooshian, S. (2015). How well do CMIP5 climate simulations replicate historical trends and patterns of meteorological droughts? Water Resources Research51(4), 2847–2864.  https://doi.org/10.1002/2014WR016318
O'Neill, B. C., Tebaldi, C., Van Vuuren, D. P., Eyring, V., Friedlingstein, P., Hurtt, G., ... & Sanderson, B. M. (2016). The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6. Geoscientific Model Development9, 3461–3482.  https://doi.org/10.5194/gmd-9-3461-2016
Oshima, N., Yukimoto, S., Deushi, M., Koshiro, T., Kawai, H., Tanaka, T. Y., & Yoshida, K. (2020). Global and Arctic effective radiative forcing of anthropogenic gases and aerosols in MRI-ESM2.0. Progress in Earth and Planetary Science7(1), 38.  https://doi.org/10.1186/s40645-020-00348-w
Rahman, G., Jung, M. K., Kim, T. W., & Kwon, H. H. (2025). Drought impact, vulnerability, risk assessment, management and mitigation under climate change: A comprehensive review. KSCE Journal of Civil Engineering29(1), 100120.  https://doi.org/10.1016/j.kscej.2024.100120
Razavi-Termeh, S. V., Sadeghi-Niaraki, A., Farhangi, F., Khiadani, M., Pirasteh, S., & Choi, S. M. (2024). Solving water scarcity challenges in arid regions: a novel approach employing human-based meta-heuristics and machine learning algorithm for groundwater potential mapping. Chemosphere363, 142859.  https://doi.org/10.1016/j.chemosphere.2024.142859
Sellar, A. A., Walton, J., Jones, C. G., Wood, R., Abraham, N. L., Andrejczuk, M., ... & Griffiths, P. T. (2020). Implementation of UK Earth system models for CMIP6. Journal of Advances in Modeling Earth Systems12(4), e2019MS001946. https://doi.org/10.1029/2019MS001946
Sentman, L. T., Dunne, J. P., Stouffer, R. J., Krasting, J. P., Toggweiler, J. R., & Broccoli, A. J. (2018). The mechanistic role of the Central American Seaway in a GFDL Earth System Model. Part 1: Impacts on global ocean mean state and circulation. Paleoceanography and Paleoclimatology33(7), 840–859.  https://doi.org/10.1029/2018PA003364
Shoja, F., Hamidianpour, M., & Barahooie, D. (2025). Forecasting climate change effects on drought using the decadal climate prediction project in arid and semi-arid regions of southeastern Iran. Natural Hazards, 1–28.  https://doi.org/10.1007/s11069-025-07405-x
Silva, L. F. (2003). Drought monitoring using remote sensing and GIS: A case study of Brazil. Journal of Environmental Management68(1), 1–12.  https://doi.org/10.1016/S0301-4797(02)00080-4
Vicente-Serrano, S. M., Beguería, S., & López-Moreno, J. I. (2010). A multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index. Journal of Climate23(7), 1696–1718.  https://doi.org/10.1175/2009JCLI2909.1
Wang, B., Jin, C., & Liu, J. (2020). Understanding future change of global monsoons projected by CMIP6 models. Journal of Climate33(15), 6471–6489.  https://doi.org/10.1175/JCLI-D-19-0993.1
Wehner, M. (2013). Very extreme seasonal precipitation in the NARCCAP ensemble: Model performance and projections. Climate Dynamics40(1), 59–80.  https://doi.org/10.1007/s00382-012-1393-1
Whipple, W. (1966). Droughts: Their occurrence and effects. Journal of Water Resources Planning and Management92(3), 25–38.  https://doi.org/10.1061/JYCEAJ.0001450
World Bank Group. (2016). Climate change and water resources in Iranhttps://www.worldbank.org/en/country/iran/publication/climate-change-water-resources-iran
You, Q., Cai, Z., Wu, F., Jiang, Z., Pepin, N., & Shen, S. S. (2021). Temperature dataset of CMIP6 models over China: evaluation, trend and uncertainty. Climate Dynamics57(1), 17–35.  https://doi.org/10.1007/s00382-021-05691-2
Yousefi, H., Ahani, A., Moridi, A., & Razavi, S. (2024). The future of droughts in Iran according to CMIP6 projections. Hydrological Sciences Journal69(7), 951–970.  https://doi.org/10.1080/02626667.2024.2348720
Zarrin, A., & Dadashi-Roudbari, A. (2021). Drought risk management in a changing climate: The role of national policies and the Drought Management Plan (DMP). Journal of Water and Sustainable Development8(1), 107–112. [In Persian] https://jwsd.um.ac.ir/article_40281.html
Zarrin, A., Dadashi-Roudbari, A., & Kadkhoda, E. (2022). Drought projection in the Urmia Lake basin under SSP Scenarios until the end of the 21st Century. Iranian Journal of Soil and Water Research53(7), 1499–1516. [In Persian]  https://doi.org/10.22059/ijswr.2022.343700.669278 
Zhai, J., Mondal, S. K., Fischer, T., Wang, Y., Su, B., Huang, J., ... Uddin, M. J. (2020). Future drought characteristics through a multi-model ensemble from CMIP6 over South Asia. Atmospheric Research246, 105111.  https://doi.org/10.1016/j.atmosres.2020.105111
Zhang, Y., & Yao, S. (2012). Drought risk assessment: A new methodology. Hydrology and Earth System Sciences16(9), 2803–2811.  https://doi.org/10.5194/hess-16-2803-2012
Zhao, T., & Dai, A. (2022). CMIP6 model-projected hydroclimatic and drought changes and their causes in the twenty-first century. Journal of Climate35(3), 897–921.  https://doi.org/10.1175/JCLI-D-21-0442.1
Zhou, H., Zheng, Y., & Guo, Z. (2021). Extreme weather events and their impact on water resources: A review. Water13(4), 521.  https://doi.org/10.3390/w13040521
Zhu, S., Ge, F., Fan, Y., Zhang, L., Sielmann, F., Fraedrich, K., & Zhi, X. (2020). Conspicuous temperature extremes over Southeast Asia: seasonal variations under 1.5 C and 2 C global warming. Climatic Change160(3), 343–360.  https://doi.org/10.1007/s10584-019-02640-1
CAPTCHA Image