ارزیابی عدم قطعیت عمق برف بازتحلیل ‌شده در شمال غرب ایران با استفاده از ERA5-Land و MERRA-2

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استاد آب و هواشناسی، گروه جغرافیای طبیعی، دانشکده علوم اجتماعی، دانشگاه محقق اردبیلی، اردبیل، ایران.

2 دکتری آب و هواشناسی، گروه جغرافیای طبیعی، دانشکده علوم اجتماعی، دانشگاه محقق اردبیلی، اردبیل، ایران.

چکیده

این مطالعه با هدف ارزیابی دقت تخمین عمق برف توسط دو پایگاه بازتحلیل ERA5-Land و MERRA-2 در شمالغرب ایران (10 ایستگاه همدیدی منتخب) طی یک دوره 2۰ ساله (2004 تا 2023) انجام شده است. داده‌های ایستگاه زمینی از سازمان هواشناسی ایران و داده‌های مربوط به دو پایگاه بازتحلیل از سایت ناسا برای MERRA-2 و کوپرنیکس برای ERA5-Land دریافت شدند. برای مقیاس‌کاهی برونداد دو پایگاه داده مذکور از روش نگاشت چارکی (Quantile Mapping) استفاده شد. دقت دو پایگاه بازتحلیل برای ارزیابی عملکردشان با روش‌های آماری KGE، تیلور، ضریب‌همبستگی پیرسن و RMSE در نرم‌افزار R به‌صورت مقایسه عمق برف برآورد شده‌ با ایستگاه‌های هواشناسی همدیدی زمینی در مقیاس زمانی ماهانه انجام گرفت. محاسبات نشان داد که روش تصحیح اریبی نگاشت چارکی (QM) برای متغیر برف قابل‌اطمینان است. پایگاه بازتحلیل ERA5 Landتوانایی تشخیص عمق برف در شمال غرب ایران را در فصل زمستان دارد و در مقایسه با داده‌های پایگاه بازتحلیل 2 MERRAدقت بالاتری دارد. نتایج نشان داد که پایگاه بازتحلیل ERA5 Land در ایستگاه‌های مهاباد، خوی، تبریز، اهر، ارومیه و مراغه بهترین عملکرد را داشته‌اند. نتایج نشان داد با گذر از غرب منطقه شمالغرب ایران به سمت شرق آن بر میزان عدم قطعیت داده‌های عمق برف پایگاه بازتحلیل ERA5 Land افزوده می‌شود.

کلیدواژه‌ها

موضوعات


©2025 The author(s). This is an open access article distributed under Creative Commons Attribution 4.0 International License (CC BY 4.0)

Asefi, M., & Fathzadeh, A. (2022). Simulating spatial distribution of snow depth using artificial intelligence and linear regression based on feature reduction (Case study: Chalgerd watershed). Water and Soil Management and Modelling3(4), 29-43. [In Persian] https://doi.org/10.22098/mmws.2022.11560.1141
Asefi, M., Fathzadeh, A., Taghizadeh-Mehrjardi, R., & Zare Chahooki, M. A. (2023). Snow depth estimating as one of the consequences of climate change using the combined least squares model approach of support vector machine and genetic algorithm. Climate Change Research3(12), 21-36. [In Persian] https://doi.org/10.30488/ccr.2022.369343.1105
Baba, M. W., Boudhar, A., Gascoin, S., Hanich, L., Marchane, A., & Chehbouni, A. (2021). Assessment of MERRA-2 and ERA5 to model the snow water equivalent in the high atlas (1981–2019). Water13(7), 890. https://doi.org/10.3390/w13070890
Bahrami, M., Fathzadeh, A., Zaree Chahooki, M. A., & Taghizadeh Mehrjerdi, R. (2016). Scale Effect Geomorphometric Parameters of Spatial Pattern of Snow Depth. Journal of Hydrogeomorphology3(6), 95-113. [In Persian] https://dor.isc.ac/dor/20.1001.1.23833254.1395.3.6.6.0
Daloz, A. S., Mateling, M., L'Ecuyer, T., Kulie, M., Wood, N. B., Durand, M., ... & Dimri, A. P. (2020). How much snow falls in the world's mountains? A first look at mountain snowfall estimates in A-train observations and reanalyses. The Cryosphere, 14(9), 3195–3207. https://doi.org/10.5194/tc-14-3195-2020
Gupta, H. V., Kling, H., Yilmaz, K. K., & Martinez, G. F. (2009). Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling. Journal of Hydrology, 377(1–2), 80–91. https://doi.org/10.1016/j.jhydrol.2009.08.003
Haji Mohammadi, H., & Hajivand Paydari, S. (2023). Evaluation of ECMWF Center Data in Monitoring and Forecasting Dust Storms in Southwestern Iran (Case Study: Khuzestan Plain). Journal of Geography and Environmental Hazards12(1), 155-170. [In Persian] https://doi.org/10.22067/geoeh.2022.75342.1178
Hamidianpour, M., & Shoja, F. (2022). An introduction to methods and techniques of climate and climate change modeling (1st ed.). University of Sistan and Baluchestan Press. [In Persian]
He, L., Xue, B., Hui, F., Xu, S., Chen, Z., & Cheng, X. (2024). Toward daily snow depth estimation on arctic sea ice during the whole winter season from passive microwave radiometer data. IEEE Transactions on Geoscience and Remote Sensing, 62, 1-15.‏ https://doi.org/10.1109/TGRS.2024.3358340
Khoshakhlagh, F., Haji Mohammadi, H., & Koshky, H. (2024). Investigating the Atmospheric Structure of the Von Phenomenon at the Time of Forest Fires in Northern Iran. Journal of Geography and Environmental Hazards13(1), 195-216. [In Persian]  https://doi.org/10.22067/geoeh.2022.76403.1219   
Knoben, W. J., Freer, J. E., & Woods, R. A. (2019). Inherent benchmark or not? Comparing Nash–Sutcliffe and Kling–Gupta efficiency scores. Hydrology and Earth System Sciences23(10), 4323-4331. https://doi.org/10.5194/hess-23-4323-2019
Lanzante, J. R., Adams‐Smith, D., Dixon, K. W., Nath, M., & Whitlock, C. E. (2020). Evaluation of some distributional downscaling methods as applied to daily maximum temperature with emphasis on extremes. International Journal of Climatology, 40(3), 1571-1585.‏ https://doi.org/10.1002/joc.6288
Li, Q., Yang, T., & Li, L. (2022). Evaluation of snow depth and snow cover represented by multiple datasets over the Tianshan Mountains: Remote sensing, reanalysis, and simulation. International Journal of Climatology, 42(8), 4223-4239. https://doi.org/10.1002/joc.7459
Majidi Karhroudi, F. S., Gharaylou, M., & Sabetghadam, S. S. (2024). Evaluation of the performance of the ERA5 and MERRA2 reanalysis datasets in estimating snow depth over Northwestern Iran. Journal of the Earth and Space Physics50(1), 251-263. [In Persian] https://doi.org/10.22059/jesphys.2023.358474.1007521
Majidi Karhroudi, F., Sabetghadam, S., & Gharaylou, M. (2024). Application of MERRA-2 to investigate changes in snow depth in high mountains of Iran. Iranian Journal of Geophysics17(5), 79-90. [In Persian] https://doi.org/10.30499/ijg.2023.387662.1502
Meier, W. N., & Stroeve, J. (2022). An updated assessment of the changing Arctic sea ice cover. Oceanography35(3/4), 10-19.‏ https://doi.org/10.5670/oceanog.2022.114
Mirmousavi, S. H., & Heidari Monfared, Z. (2024). Analysis of Spatio-Temporal Variations of the Average Snow Cover During the Cold Seasons in the Northwest of Iran. Nivar48(124-125), 84-104. [In Persian] https://doi.org/10.30467/nivar.2024.437745.1279
Moriasi, D. N., Arnold, J. G., Van Liew, M. W., Bingner, R. L., Harmel, R. D., & Veith, T. L. (2007). Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations. Transactions of the ASABE, 50(3), 885–900. https://doi.org/10.13031/2013.23153
Muelchi, R., Rössler, O., Schwanbeck, J., Weingartner, R., & Martius, O. (2021). River runoff in Switzerland in a changing climate–runoff regime changes and their time of emergence. Hydrology and Earth System Sciences, 25(6), 3071-3086.‏ https://doi.org/10.5194/hess-25-3071-2021
Naghizadeh, H., Rasouly, A. A., Sari Sarraf, B., Jahanbakhsh, S., & Babaian, I. (2019). The Variability of the Snow Depth in the Northern Zone of Iran is based on the ECMWF Database of the ERA Interim Edition. Journal of Geography and Environmental Hazards8(2), 211-229. [In Persian] https://doi.org/10.22067/geo.v0i0.78609
Panofsky, H. A., & Brier, G. W. (1968). Some applications of statistics to meteorology. Mineral Industries Extension Services, College of Mineral Industries, Pennsylvania State University. https://cir.nii.ac.jp/crid/1970304959946981407
Qiao, Y., Ji, D., Shang, H., Xu, J., Xu, R., & Shi, C. (2023). The Fusion of ERA5 and MERRA-2 Atmospheric Temperature Profiles with Enhanced Spatial Resolution and Accuracy. Remote Sensing15(14), 3592. https://doi.org/10.3390/rs15143592
Shukla, P. R., Skea, J., Slade, R., Al Khourdajie, A., Van Diemen, R., McCollum, D., ... & Malley, J. (2022). Climate change 2022: Mitigation of climate change. Contribution of working group III to the sixth assessment report of the Intergovernmental Panel on Climate Change10, 9781009157926. https://doi.org/10.1017/9781009157926
Taszarek, M., Pilguj, N., Allen, J. T., Gensini, V., Brooks, H. E., & Szuster, P. (2021). Comparison of convective parameters derived from ERA5 and MERRA-2 with rawinsonde data over Europe and North America. Journal of Climate34(8), 3211-3237.‏ https://doi.org/10.1175/JCLI-D-20-0484.1
Taylor, K. E. (2001). Summarizing multiple aspects of model performance in a single diagram. Journal of Geophysical Research: Atmospheres, 106(D7), 7183–7192. https://doi.org/10.1029/2000JD900719
Xiao, L., Che, T., & Dai, L. (2020). Evaluation of remote sensing and reanalysis snow depth datasets over the northern hemisphere during 1980–2016. Remote Sensing, 12(19), 3253.‏ https://doi.org/10.3390/rs12193253
Zhao, L., Chen, J., Shahzad, M., Xia, M., & Lin, H. (2024). MFPANet: Multi-Scale Feature Perception and Aggregation Network for High-Resolution Snow Depth Estimation. Remote Sensing, 16(12), 2087. https://doi.org/10.3390/rs16122087
CAPTCHA Image