ارائه یک روش مبتنی بر یادگیری ماشین برای تلفیق محصولات آئروسل سنجندۀ مادیس جهت بهبود تخمین PM2.5، به‌عنوان یکی از مهم‌ترین مخاطرات زیست‌محیطی در شهر تهران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 کارشناسی ارشد دانشکدۀ مهندسی عمران و حمل‌ونقل، دانشگاه اصفهان، اصفهان، ایران

2 استادیار گروه مهندسی نقشه‌برداری، دانشکده مهندسی عمران و حمل‌ونقل، دانشگاه اصفهان، ایران

چکیده

افزایش بحران‌های محیط‌زیست در جهان باعث شده است تا در دهه‌های اخیر اهمیت مطالعه در مورد مسائل زیست‌محیطی افزایش یابد. آلودگی هوا در ردیف یکی از زیان‌بارترین مخاطرات طبیعی قرار گرفته است. ذرات معلق در هوا با قطر کمتر از 2.5 میکرومتر (PM2.5) یکی از خطرناک‌ترین و مضرترین نوع ذرات در میان آلاینده‌های مختلف هوا برای سلامتی انسان هستند. یکی از تکنیک‌های تخمین PM2.5 استفاده از محصولات عمق نوری آئروسل (AOD) است. محصولات مختلف AOD با الگوریتم‌های متفاوتی بازیابی می‌شوند که دارای دقت و قدرت تفکیک مکانی یکسانی نمی‌باشند. به دلیل تفاوت در فرضیات و تقریبات زیادی که در مراحل بازیابی AOD ها اتخاذ می‌شود، محصولات AOD تولید شده دارای عدم قطعیت هستند. این موضوع، باعث کاهش دقت تخمین غلظت PM2.5 می‌گردد. هدف این مقاله بررسی امکان تلفیق محصولات AOD حاصل از مشاهدات سنجندۀ MODIS (بازیابی شده توسط الگوریتم‌های Deep Blue و Dark Target) به‌منظور تخمین دقیق‌تر PM2.5 است. در این مطالعه، نخست با انجام آزمایش بر روی الگوریتم‌های مختلف یادگیری ماشین و بررسی عملکرد آن‌ها در تخمین PM2.5 از روی‌داده‌های AOD، الگوریتم XGBoost به‌عنوان الگوریتم پایه در روش‌ تلفیق پیشنهادی انتخاب شد. سپس محصول AOD تلفیقی با استفاده از یک روش وزن‌دهی مبتنی بر کیفیت بازیابی محصولات اولیه، تولید شد. محصول تلفیقی به همراه داده‌های هواشناسی و الگوریتم XGBoost برای تخمین PM2.5 مورد استفاده قرار گرفت. نتایج حاصل از تلفیق نشان داد که دقت تخمین PM2.5 محصول تلفیقی در هر سه شاخص RMSE، MAE و  نسبت به حالت‌هایی که محصولات به‌صورت منفرد استفاده شدند، بهتر است (0.77= ، 7.00 MAE = ، 9.59 RMSE=). علاوه بر افزایش دقت، روش پیشنهادی ساده و از نظر محاسباتی کم‌هزینه است. علاوه بر این در این تحقیق مشخص گردید، توجه به نشانگر کیفی بازیابی محصولات AOD، زمینۀ دستیابی به یک محصول تلفیقی دقیق‌تر را فراهم خواهد کرد.

چکیده تصویری

ارائه یک روش مبتنی بر یادگیری ماشین برای تلفیق محصولات آئروسل سنجندۀ مادیس جهت بهبود تخمین PM2.5، به‌عنوان یکی از مهم‌ترین مخاطرات زیست‌محیطی در شهر تهران

کلیدواژه‌ها


Anderson, L. O., Malhi, Y., Aragão, L. E., Ladle, R., Arai, E., Barbier, N., & Phillips, O. (2010). Remote sensing detection of droughts in Amazonian forest canopies. New Phytologist, 187(3), 733-750. doi:https://doi.org/10.1111/j.1469-8137.2010.03355.x
Bagheri, H. (2022). A machine learning-based framework for high resolution mapping of PM2.5 in Tehran, Iran, using MAIAC AOD data. Advances in Space Research, 69(9), 3333-3349. doi:https://doi.org/10.1016/j.asr.2022.02.032
Bagheri, H. (2023). Using deep ensemble forest for high-resolution mapping of PM2. 5 from MODIS MAIAC AOD in Tehran, Iran. Environmental Monitoring and Assessment, 195(3), 377. doi:https://doi.org/10.1007/s10661-023-10951-1
Bagheri, H., Sadeghian, S., & Sadjadi, S. Y. (2014). The Assessment of using an Intelligent Algorithm for the Interpolation of Elevation in the DTM Generation. Photogrammetrie-Fernerkundung-Geoinformation, 197-208. doi:https://doi.org/0.1127/1432-8364/2014/0220
Bagheri, H., Schmitt, M., d’Angelo, P., & Zhu, X. X. (2018). A framework for SAR-optical stereogrammetry over urban areas. ISPRS journal of photogrammetry and remote sensing, 146, 389-408. doi:https://doi.org/10.1016/j.isprsjprs.2018.10.003
Bagheri, H., Schmitt, M., & Zhu, X. X. (2017). Uncertainty assessment and weight map generation for efficient fusion of TanDEM-X and Cartosat-1 DEMs. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 42(1/W1)), 433-439. doi:https://doi.org/10.5194/isprs-archives-XLII-1-W1-433-2017
Bagheri, H., Schmitt, M., & Zhu, X. X. (2018). Fusion of TanDEM-X and Cartosat-1 elevation data supported by neural network-predicted weight maps. ISPRS journal of photogrammetry and remote sensing, 144, 285-297. doi:https://doi.org/10.1016/j.isprsjprs.2018.07.007
Bharath Ramsundar & Reza Bosagh Zadeh. (2018). TensorFlow for Deep Learning (Rachel Roumeliotis & Alicia Young Ed. first ed. Vol. 16802 KB).
Castanedo, F. (2013). A review of data fusion techniques. The Scientific World Journal, 2013, 704504. doi:https://doi.org/10.1155/2013/704504
Chang, C.-C., & Lin, C.-J. (2011). LIBSVM: a library for support vector machines. ACM transactions on intelligent systems and technology (TIST), 2(3), 1-27. doi:https://dl.acm.org/ doi/10.1145/ 1961189.1961199
Chen, N., Yang, M., Du, W., & Huang, M. (2021). PM2.5 estimation and spatial-temporal pattern analysis based on the modified support vector regression model and the 1 km resolution MAIAC AOD in Hubei, China. ISPRS International Journal of Geo-Information, 10(1), 31. doi:https://doi.org/10.3390/ijgi10010031
Dark Target aerosol produact user's guid (2020). In: NASA.
Gogikar, P., Tripathy, M. R., Rajagopal, M., Paul, K. K., & Tyagi, B. (2021). PM2.5 estimation using multiple linear regression approach over industrial and non-industrial stations of India. Journal of Ambient Intelligence and Humanized Computing, 12(2), 2975-2991. doi:https://doi.org/10.1007/s12652-020-02457-2
Gupta, P., & Christopher, S. A. (2009). Particulate matter air quality assessment using integrated surface, satellite, and meteorological products: Multiple regression approach. Journal of Geophysical Research: Atmospheres, 114(D14). doi:https://doi.org/10.1029/2008JD011496
Habibi, R., Alesheikh, A. A., Mohammadinia, A., & Sharif, M. (2017). An assessment of spatial pattern characterization of air pollution: A case study of CO and PM2.5 in Tehran, Iran. ISPRS International Journal of Geo-Information, 6(9), 270. doi: https://doi.org/10.3390/ijgi6090270
Hall, D. L., & Llinas, J. (1997). An introduction to multisensor data fusion. Proceedings of the IEEE, 85(1), 6-23. doi:https://doi.org/10.1109/5.554205
Han, B., Ding, H., Ma, Y., & Gong, W. (2017). Improving retrieval accuracy for areosol optical depth by fusiom of MODIS and CALIOP data. Tehnicki vjesnik/Technical Gazette, 24(3). doi:https://doi.org/10.17559/TV-20160429044233
Hsu, N., Jeong, M. J., Bettenhausen, C., Sayer, A., Hansell, R., Seftor, C., . . . Tsay, S. C. (2013). Enhanced Deep Blue aerosol retrieval algorithm: The second generation. Journal of Geophysical Research: Atmospheres, 118(16), 9296. doi:https://doi.org/10.1002/jgrd.50712
Hu, X., Waller, L. A., Lyapustin, A., Wang, Y., Al-Hamdan, M. Z., Crosson, W. L., . . . Puttaswamy, S. J. (2014). Estimating ground-level PM2.5 concentrations in the Southeastern United States using MAIAC AOD retrievals and a two-stage model. Remote Sensing of Environment, 140, 220-232. doi:https://doi.org/10.1016/j.rse.2013.08.032
Huang, C.-J., & Kuo, P.-H. (2018). A deep CNN-LSTM model for particulate matter (PM2. 5) forecasting in smart cities. Sensors, 18(7), 2220. doi:https://doi.org/10.3390/s18072220
Jung, C.-R., Chen, W.-T., & Nakayama, S. F. (2021). A national-scale 1-km resolution PM2.5 estimation model over japan using maiac aod and a two-stage random forest model. Remote Sensing, 13(18), 3657. doi:https://doi.org/10.3390/rs13183657
Khaleghi, B., Khamis, A., Karray, F. O., & Razavi, S. N. (2013). Multisensor data fusion: A review of the state-of-the-art. Information Fusion, 14(1), 28-44. doi:https://doi.org/ 10.1016/ j.inffus. 2011.08.001
Kianian, B., Liu, Y., & Chang, H. H. (2021). Imputing satellite-derived aerosol optical depth using a multi-resolution spatial model and random forest for PM2.5 prediction. Remote Sensing, 13(1), 126. doi:https://doi.org/10.3390/rs13010126
Li, L. (2020). A robust deep learning approach for spatiotemporal estimation of satellite AOD and PM2.5. Remote Sensing, 12(2), 264. doi:https://doi.org/10.3390/rs12020264
Liao, Q., Jin, W., Tao, Y., Qu, J., Li, Y., & Niu, Y. (2020). Health and Economic Loss Assessment of PM2. 5 Pollution during 2015–2017 in Gansu Province, China. International Journal of Environmental Research and Public Health, 17(9), 3253. doi:https:// doi.org/ 10.3390/ ijerph1 7093253
Liu, N., Zou, B., Feng, H., Wang, W., Tang, Y., & Liang, Y. (2019). Evaluation and comparison of multiangle implementation of the atmospheric correction algorithm, Dark Target, and Deep Blue aerosol products over China. Atmospheric Chemistry and Physics, 19(12), 8243-8268. doi:https://doi.org/10.5194/acp-19-8243-2019
Luo, H., Guan, Q., Lin, J., Wang, Q., Yang, L., Tan, Z., & Wang, N. (2020). Air pollution characteristics and human health risks in key cities of northwest China. Journal of Environmental Management, 269, 110791. doi:https:// doi.org/ 10.1016/ j.jenvman. 2020. 110791
Meng, T., Jing, X., Yan, Z., & Pedrycz, W. (2020). A survey on machine learning for data fusion. Information Fusion, 57, 115-129. doi:https://doi.org/10.1016/j.inffus.2019.12.001
Mirzaei, A., Bagheri, H., & Sattari, M. (2023). Data level and decision level fusion of satellite multi-sensor AOD retrievals for improving PM2. 5 estimations, a study on Tehran. Earth Science Informatics, 16(1), 753-771. doi:http://dx.doi.org/10.48550/arXiv.2302.10278
Nabavi, S. O., Haimberger, L., & Abbasi, E. (2019). Assessing PM2.5 concentrations in Tehran, Iran, from space using MAIAC, deep blue, and dark target AOD and machine learning algorithms. Atmospheric Pollution Research, 10(3), 889-903. doi:https:// doi.org/ 10.1016/ j.apr.2018.12.017
Ni, X., Cao, C., Zhou, Y., Cui, X., & P Singh, R. (2018). Spatio-temporal pattern estimation of PM2. 5 in Beijing-Tianjin-Hebei Region based on MODIS AOD and meteorological data using the back propagation neural network. Atmosphere, 9(3), 105. doi:https:// doi.org/ 10.3390/atmos9030105
Pashayi, M., & Satari, M. (2022). Improvement of spatial-temporal resolution of aerosol profile by using multi-source satellite data over the Persian Gulf. Atmospheric Environment, 119410. doi:https://doi.org/10.1016/j.atmosenv.2022.119410
Popov, S., Morozov, S., & Babenko, A. (2019). Neural oblivious decision ensembles for deep learning on tabular data. arXiv preprint arXiv:1909.06312. doi:https://doi.org/ 10.48550/ arXiv.1909.06312
Qi, Y., Li, Q., Karimian, H., & Liu, D. (2019). A hybrid model for spatiotemporal forecasting of PM2.5 based on graph convolutional neural network and long short-term memory. Science of the Total Environment, 664, 1-10. doi:https://doi.org/10.1016/j.scitotenv.2019.01.333
Remer, L., Mattoo, S., Levy, R., & Munchak, L. (2013). MODIS 3 km aerosol product: algorithm and global perspective. Atmospheric Measurement Techniques, 6(7), 1829-1844. doi:https://doi.org/10.5194/amt-6-1829-2013
Sayer, A., Munchak, L., Hsu, N., Levy, R., Bettenhausen, C., & Jeong, M. J. (2014). MODIS Collection 6 aerosol products: Comparison between Aqua's Deep Blue, Dark Target, and “merged” data sets, and usage recommendations. Journal of Geophysical Research: Atmospheres, 119(24), 13,965-913,989. doi:https://doi.org/10.1002/2014JD022453
Shwartz-Ziv, R., & Armon, A. (2022). Tabular data: Deep learning is not all you need. Information Fusion, 81, 84-90. doi:https://doi.org/10.1016/j.inffus.2021.11.011
Singer, A., Zobeck, T., Poberezsky, L., & Argaman, E. (2003). The PM10 and PM2.5 dust generation potential of soils/sediments in the Southern Aral Sea Basin, Uzbekistan. Journal of Arid Environments, 54(4), 705-728. doi:https://doi.org/10.1006/jare.2002.1084
Stafoggia, M., Bellander, T., Bucci, S., Davoli, M., De Hoogh, K., De'Donato, F., . . . Renzi, M. (2019). Estimation of daily PM10 and PM2.5 concentrations in Italy, 2013–2015, using a spatiotemporal land-use random-forest model. Environment International, 124, 170-179. doi:https://doi.org/10.1016/j.envint.2019.01.016
Tang, Q., Bo, Y., & Zhu, Y. (2016). Spatiotemporal fusion of multiple‐satellite aerosol optical depth (AOD) products using Bayesian maximum entropy method. Journal of Geophysical Research: Atmospheres, 121(8), 4034-4048. doi:https://doi.org/10.1002/2015JD024571
Tsai, T.-C., Jeng, Y.-J., Chu, D. A., Chen, J.-P., & Chang, S.-C. (2011). Analysis of the relationship between MODIS aerosol optical depth and particulate matter from 2006 to 2008. Atmospheric Environment, 45(27), 4777-4788. doi:https:// doi.org/ 10.1016/ j.atmosenv. 2009.10. 006
Wang, Y., Yuan, Q., Shen, H., Zheng, L., & Zhang, L. (2020). Investigating multiple aerosol optical depth products from MODIS and VIIRS over Asia: Evaluation, comparison, and merging. Atmospheric Environment, 230, 117548. doi:https:// doi.org/ 10.1016/ j.atmosenv. 2020. 117548
Wang, Z., Chen, L., Tao, J., Zhang, Y., & Su, L. (2010). Satellite-based estimation of regional particulate matter (PM) in Beijing using vertical-and-RH correcting method. Remote Sensing of Environment, 114(1), 50-63. doi:https://doi.org/10.1016/j.rse.2009.08.009
Wei, X., Chang, N.-B., Bai, K., & Gao, W. (2020). Satellite remote sensing of aerosol optical depth: Advances, challenges, and perspectives. Critical Reviews in Environmental Science and Technology, 50(16), 1640-1725. doi:https://doi.org/10.1080/10643389.2019.1665944
Xia, X., Zhao, B., Zhang, T., Wang, L., Gu, Y., Liou, K.-N., . . . Huang, Y. (2021). Satellite-Derived Aerosol Optical Depth Fusion Combining Active and Passive Remote Sensing Based on Bayesian Maximum Entropy. IEEE Transactions on Geoscience and Remote Sensing, 60, 1-13. doi:https://doi.org/10.1109/TGRS.2021.3051799
Xiao, Q., Chang, H. H., Geng, G., & Liu, Y. (2018). An ensemble machine-learning model to predict historical PM2.5 concentrations in China from satellite data. Environmental science & technology, 52(22), 13260-13269. doi:https://doi.org/10.1021/acs.est.8b02917
Xu, H., Guang, J., Xue, Y., De Leeuw, G., Che, Y., Guo, J., . . . Wang, T. (2015). A consistent aerosol optical depth (AOD) dataset over mainland China by integration of several AOD products. Atmospheric Environment, 114, 48-56. doi:https://doi.org/ 10.1016/ j.atmosenv. 2015. 05.023
Xu, H., Xue, Y., Guang, J., Li, Y., Yang, L., Hou, T., . . . Chen, Z. (2012). A semi-empirical optical data fusion technique for merging aerosol optical depth over China. Paper presented at the 2012 IEEE International Geoscience and Remote Sensing Symposium.
Yang, Q., Yuan, Q., Li, T., Shen, H., & Zhang, L. (2017). The relationships between PM2.5 and meteorological factors in China: seasonal and regional variations. International Journal of Environmental Research and Public Health, 14(12), 1510. doi:https://doi.org/ 10.3390%2 Fijerph14121510
You, W., Zang, Z., Zhang, L., Li, Y., Pan, X., & Wang, W. (2016). National-scale estimates of ground-level PM2.5 concentration in China using geographically weighted regression based on 3 km resolution MODIS AOD. Remote Sensing, 8(3), 184. doi:https:// doi.org/ 10.3390/rs8030184
Zamani Joharestani, M., Cao, C., Ni, X., Bashir, B., & Talebiesfandarani, S. (2019). PM2.5 prediction based on random forest, XGBoost, and deep learning using multisource remote sensing data. Atmosphere, 10(7), 373. doi:https://doi.org/10.3390/atmos10070373
Zhao, C., Wang, Q., Ban, J., Liu, Z., Zhang, Y., Ma, R., . . . Li, T. (2020). Estimating the daily PM2.5 concentration in the Beijing-Tianjin-Hebei region using a random forest model with a 0.01°× 0.01° spatial resolution. Environment International, 134, 105297. doi:https:// doi.org/ 10.1016/j.envint.2019.105297
Zhu, X. X., Hu, J., Qiu, C., Shi, Y., Kang, J., Mou, L., . . . Huang, R. (2020). So2Sat LCZ42: A benchmark data set for the classification of global local climate zones [Software and Data Sets]. IEEE Geoscience and Remote Sensing Magazine, 8(3), 76-89. doi:https://d oi.org/ 10.1109/ MGRS.2020.2964708
 
CAPTCHA Image