تأثیر سولیفلکسیون‌های حوضه آبریز درونگر بر خصوصیات فیزیکی و شیمیایی خاک

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری ژئومورفولوژی، گروه جغرافیا، دانشگاه فردوسی مشهد

2 دانشیار ژئومورفولوژی، گروه جغرافیا، دانشگاه فردوسی مشهد

3 استاد بیولوژی خاک، گروه علوم و مهندسی خاک، دانشگاه فردوسی مشهد

چکیده

سولیفلکسیون عبارت است از جابجایی قشر گلی بر سطح زیربنای ثابت که در مناطق مجاور یخچالی و کوهستان­ها رخ می‌دهد. این فرآیند کمتر از فرآیندهای سریع (زمین‌لغزش) و انتقالات ژئوشیمیایی بر برهنه شدن کوه­ها تأثیر می‌گذارد، ولی به دلیل گستردگی، تأثیر زیادی بر تکامل مناظر کوهستانی دارد. این در حالی است که به‌عنوان عامل اختلال طبیعی دست‌کم گرفته شده و نقش اکولوژیکی آن‌ در حفظ تنوع زیستی نادیده گرفته می‌شود. به‌منظور بررسی خصوصیات فیزیکی و شیمیایی خاک­ سولیفلکسیون‌های مختلف، 4 سایت در حوضه آبریز رودخانه درونگر، واقع در شمال شرق کشور، براساس نوع پله‌ای یا زبانه‌ای انتخاب شدند. سپس از میکروتوپوگرافی مختلف شامل قسمت‌های پیشانی، کف و حاشیه نمونه‌گیری (درمجموع 24 نمونه) انجام و بافت، کربن آلی، فسفر و پتاسیم قابل‌دسترس، pH، هدایت الکتریکی، کربنات کلسیم معادل، رطوبت اشباع، پایداری خاکدانه و تخلخل اندازه‌گیری شدند. نتایج نشان داد که تأثیر نوع سایت و میکرومورفولوژی بر تخلخل و فسفر قابل‌دسترس خاک معنی‌دار نبود. در سایر خصوصیات موردمطالعه تنها اثر ساده نوع سایت موردمطالعه معنی‌دار بود. مقادیر pH، هدایت الکتریکی، رطوبت اشباع و پتاسیم قابل‌دسترس در سایت 1 و 2 در مقایسه با دو سایت دیگر کمتر بوده و اختلاف معنی‌داری داشت. این روند در مورد کربن آلی، پایداری خاکدانه و کربنات کلسیم معادل برعکس بود و بیشترین مقدار این فاکتورها در سولیفلکسیون‌های نوع پله­ای مشاهده شد. به نظر می‌رسد تأثیر جابجایی خاک و ارتباط متقابل برخی خصوصیات خاک و اثرگذاری آن‌ها بر روی هم می­تواند باعث به وجود آمدن خصوصیات مختلف در خاک سولیفلکسیون‌های موردبررسی باشد.

چکیده تصویری

تأثیر سولیفلکسیون‌های حوضه آبریز درونگر بر خصوصیات فیزیکی و شیمیایی خاک

کلیدواژه‌ها

موضوعات


احمدی، حسن؛ 1379. ژئومورفولوژی کاربردی: فرسایش آبی. جلد اول. موسسه چاپ و انتشارات دانشگاه تهران.
امامی، سید نعیم؛ جلالیان، احمد؛ خسروی، عباس؛ 1395. نقش ویژگی‌های فیزیکی و شیمیایی خاک در وقوع زمین‌لغزش (مطالعه موردی: منطقه افسرآباد چهارمحال و بختیاری). پژوهشنامه مدیریت حوزه آبخیز. سال هفتم. شماره 13. 10.18869/acadpub.jwmr.7.13.192  https://doi.org/
رفاهی، حسینقلی. (1394). فرسایش آبی و کنترل آن. دانشگاه تهران.
قهرودی، منیژه؛ عادلی، زهرا؛ صدوق، سید حسن؛ 1400. روابط بیوژئومورفولوژی بین پوشش گیاهی، خاک، و عناصرلندفرمی (مطالعه موردی حوضه حبله رود). فصلنامه پژوهش‌های جغرافیای طبیعی. دوره53. شماره 3.  https://doi.org/10.22059/JPHGR.2021.324212.1007619
محمودی، فرج‌الله؛ 1379. ژئومورفولوژی دینامیک. انتشارات دانشگاه پیام نور.
 
Benedict JB.1976. Frost creep and gelifluction features: a review. Quaternary Research. 6(1):55-76. https://doi.org/10.1016/0033-5894(76)90040-5.
Beylich, A. A., 2008. Sediment fluxes and sediment budget in Latnjavagge and the potential of applying unified methods for integrating investigations on sediment fluxes and budgets in cold-environment catchments. Geology for Society. Geological Survey of Norway Special Publication, 11, 111-130.
Bouyoucos GJ. 1962. Hydrometer method improved for making particle size analyses of soils 1. Agronomy journal. 54(5): 464-475. https:// doi.org/ 10.2134/ agronj1962. 0002196200 5400050028x.
Brockett BF, Prescott CE, Grayston SJ., 2012. Soil moisture is the major factor influencing microbialcommunity structure and enzyme activities across seven biogeoclimatic zones in western Canada. Soil biology and biochemistry. 44(1): 9-20. https:// oi.org/ 10.1016/ j.soilbio. 2011.09.003
Cannone N, Guglielmin M., 2010. Relationships between periglacial features and vegetation development in Victoria Land, continental Antarctica. Antarctic Science. 22(6):703-13.  https://doi.org/10.1017/S0954102010000751
Carter MR, Gregorich EG., 2007. Soil sampling and methods of analysis. CRC press. https://doi.org/10.1201/9781420005271
Cullen CA, Al Suhili R, Aristizabal E. A., 2022. Landslide Numerical Factor Derived from CHIRPS for Shallow Rainfall Triggered Landslides in Colombia. Remote Sensing. 14(9): 22-39. https://doi.org/10.3390/rs14092239
Eichel J, Draebing D, Kattenborn T, Senn JA, Klingbeil L, Wieland M, Heinz E., 2020. Unmanned aerial vehicle‐based mapping of turf‐banked solifluction lobe movement and its relation to material, geomorphometric, thermal and vegetation properties. Permafrost and Periglacial Processes. 31(1):97-109. https://doi.org/10.1002/ppp.2036
Ekwue EI, Bartholomew J., 2011. Electrical conductivity of some soils in Trinidad as affected by density, water and peat content. Biosystems Engineering. 108(2): 95-103. https://doi.org/10.1016/j.biosystemseng.2010.11.002
Estefan G, Sommer R, Ryan J., 2013. Methods of soil, plant, and water analysis. A manual for the West Asia and North Africa region, 3: 65-119.      https://repo.mel.cgiar.org/handle/20.500.11766/7512
French H.M., 1996. The Periglacial Environment, 2nd ed. Longman, Essex. 341 pp. https://doi.org/10.1017/S0016756897488258.
Haussmann N, Boelhouwers J, McGeoch M., 2009a. Fine scale variability in frost cycle dynamics surrounding cushions of the dominant vascular plant species (Azorella selago) on Marion  Island. Geografiska Annaler. 91: 257–268. https://doi.org/ 10.1016/j.geomorph.2008.12.002.
Haussmann N, McGeoch M, Boelhouwers J., 2009b. Interactions between a cushion plant (Azorella selago) and surface sediment transport on sub-Antarctic Marion Island. Geomorphology. 107: 139–148. https://doi.org/10.1016/j.geomorph.2008.12.002
Haussmann NS. 2011. Biogeomorphology: Understanding different research approaches. Earth Surf. Process. Landforms. 36: 136–138. https://doi.org/10.1002/esp.2097
Heil K, Schmidhalter U., 2017. The Application of EM38: Determination of Soil Parameters, Selection of Soil Sampling Points and Use in Agriculture and Archaeology. Sensors 17: 25-40.  https://doi.org/10.3390/s17112540
Hjort, J., Ujanen, J., Parviainen, M., Tolgensbakk, J., Etzelmüller, B., 2014. Transferability of geo­morphological distribution models: evaluation using solifluction features in subarctic and Arctic regions. Geomorphology 204, 165–176. https:// doi.org/ 10.1016/ j.geomorph. 2013.08.002
Jensen JL, Schjønning P, Christensen BT, Munkholm LJ., 2016. Suboptimal fertilisation compromises soil physical properties of a hard-setting sandy loam. Soil Research,  55(4): 332-340. https://doi.org/10.1071/SR16218.
Jensen JL, Schjønning P, Watts CW, Christensen BT, Peltre C, Munkholm LJ., 2019. Relating soil C and organic matter fractions to soil structural stability. Geoderma,  337: 834-843. https://doi.org/10.1016/j.geoderma.2018.10.034
Kellerer-Pirklbauer A., 2018. Solifluction rates and environmental controls at local and regional scales in central Austria. Norsk Geografisk Tidsskrift-Norwegian Journal of Geography, vol. 72(1): 37-56. https://doi.org/10.1080/00291951.2017.1399164
Kemper WD, Rosenau RC., 1986. Aggregate stability and size distribution. Pp. 425-442. In: Klute A (ed). Methods of Soil Analysis, Part 1, Physical and Mineralogical Methods.   https://doi.org/ 10.2136/sssabookser5.1.2ed
Lajili A, Cambouris AN, Chokmani K, Duchemin M, Perron I, Zebarth BJ, Biswas A, AdamchukVI., 2021. Analysis of Four Delineation Methods to Identify Potential Management Zones in a Commercial Potato Field in Eastern Canada. Agronomy. 11: 4-32. https://doi.org/10.3390/agronomy11030432
le Roux P, Boelhouwers J, Davis JD, Haussmann N, Jantze E, Meiklejohn I. 2011. Spatial association of rodent burrows with landforms in the Swedish subArctic mountains: implications for periglacial feature stability. Arctic, Antarctic and Alpine Research. 43: 223–228. https://doi.org/10.1657/1938-4246-43.2.223
Loeppert RH, Suarez DL., 1996. Carbonate and gypsum. Methods of soil analysis. 3: 437-474.  https:// digitalcommons.unl.edu/ cgi/ viewcontent.cgi? article=1509&context= usdaars facpub
Lundgren L., 1978. Studies of soil and vegetation development on fresh landslide scars in the Mgeta Valley, Western Uluguru Mountains, Tanzania. Geografiska Annaler. Series A, Physical Geography, 60: 91–127. https:// www.jstor.org/ stable/ 520435? Type Access Workflow=login.
Masyagina OV, Evgrafova SY, Bugaenko TN, Kholodilova VV, Krivobokov LV, Korets MA, Wagner D., 2019. Permafrost landslides promote soil CO2 emission and hinder C accumulation. Science of the Total Environment, 657: 351-364. https:// doi.org/ 10.1016/ j.scitotenv. 2018.11. 468
Matsuoka N., 2001. Solifluction rates, processes and landforms: a global review. Earth-Science Reviews, 55(1-2): 107-134. https://doi.org/10.1016/S0012-8252(01)00057-5
Novais W, Rodríguez-Mejías JC, Perret J, Soto C, Villalobos JE, Fuentes CL, Abdalla K., 2019. Calibration and validation of Veris MSP3 on two soils in Guanacaste, Costa Rica Agronomía Mesoamericana. 30(2): 535-551. https://doi.org/10.15517/am.v30i2.33579
Olsen, S.R. and Sommers, L.E., 1982. Phosphorus. In: Page, A.L., Ed., Methods of Soil Analysis Part 2 Chemical and Microbiological Properties, American Society of Agronomy, Soil Science Society of America, Madison, 403-430. https:// acsess.onlinelibrary.wiley.com/ doi/book/ 10.2134/ agronmonogr9.2.2ed
 Pansu M, Gautheyrou J., 2007. Handbook of soil analysis: mineralogical, organic and inorganic methods. Springer Science & Business Media. https://doi.org/10.1007/978-3-540-31211-6_1
Price LW., 1971. Vegetation, microtopography, and depth of active layer on different exposures in subarctic Alpine tundra. Ecology. 52: 638–647. https://doi.org/ 10.2307/1934152.
Prokushkin SG, Bugaenko TN, Prokushkin AS, Shikunov VG., 2010. Succession driven Transformation of Plant and Soil Cover on Solifluction Sites in the Permafrost Zone of Central Evenkia. https://doi.org/ 10.1134/S1062359010010115.
Qu W, Han G, Wang J, Li J, Zhao M, He W, Wei S., 2021. Short-term effects of soil moisture on soil organic carbon decomposition in a coastal wetland of the Yellow River Delta. Hydrobiologia, 848(14):3259-3271.  https://doi.org/10.1134/S1062359010010115.
Reddy VS, Singh JS. 1993. Changes in vegetation and soil during succession following landslide disturbance in the Central Himalaya. J. Environ. Manag. 39: 235–250. https:// doi.org/ 10.1006/jema.1993.1068
Ridefelt, H., Etzelmüller, B., & Boelhouwers, J., 2010. Spatial analysis of solifluction landforms and process rates in the Abisko Mountains, northern Sweden. Permafrost and periglacial processes, 21(3), 241-255. https://doi.org/10.1002/ppp.681
Rose JP, Malanson GP., 2012. Microtopographic heterogeneity constrains alpine plant diversity, Glacier National Park, MT. Plant Ecology. 213(6): 955-965. https:// www.jstor.org/ stable/ 23267480? typeAccessWorkflow=login
Van Eyndea E, Dondeynea S, Isabiryeb  M, Deckersa  J,  Poesen J., 2017. Impact of landslides on soil characteristics: Implications for estimating their age, Catena 157. https:// doi.org/ 10.1016/ j.catena.2017.05.003
Verpaelst, M., Fortier, D., Kanevskiy, M., Paquette, M., & Shur, Y., 2017. Syngenetic dynamic of permafrost of a polar desert solifluction lobe, Ward Hunt Island, Nunavut. Arctic Science, 3(2), 301-319. https://doi.org/10.1139/as-2016-0018
Völkel J, Huber J, Leopold M., 2011. Significance of slope sediments layering on physical characteristics and interflow within the Critical Zone–Examples from the Colorado Front Range, USA. Applied Geochemistry, 26:143-145. https:// doi.org/ 10.1016/ j.apgeochem. 2011.03.052
Walker LR, Shiels AB., 2013. Physical Causes and Consequences. Landslide Ecology. Cambridge University Press, Cambridge, 4: 46–81. https:// digitalcommons.unl.edu/ icwdm_usdanwrc/ 1640/ ?utm_source=digitalcommons.unl.edu% 2Ficwdm_usdanwrc%2 F1640&utm medium= PDF&utm_campaign=PDFCoverPages
Walkley A, Black IA., 1934. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil science,  37(1): 29-38. https://doi.org/10.1097/00010694-193401000-00003
Zarin DJ, Johnson AHA., 1995. Base saturation, nutrient cation, and organic matter increases during early pedogenesis on landslide scars in the Luquillo Experimental Forest, Puerto Rico. Geoderma. 65: 317–330. https://doi.org/10.1016/0016-7061(94)00048-F
CAPTCHA Image