روند وردایی فرین‌های اقلیمی براساس شاخص‌های ترکیبی تغییر اقلیم در گستره ایران

نوع مقاله : پژوهشی

نویسندگان

1 دانشگاه خوارزمی

2 شهید بهشتی

3 دانشگاه خوارزمی تهران

چکیده

تغییرات آب‌وهوایی و گرمایش جهانی اثرات بسیار زیادی بر جوامع و بوم سامانه‌ها دارد. شناسایی حوادث فرین آب‌وهوایی در مقیاس مکانی و زمانی، به‌منظور برنامه‌ریزی جهت کاهش آثار سوء و افزایش استراتژی‌های انطباق بسیار حائز اهمیت است. استفاده از شاخص‌های ترکیبی شناخت بهتری از وضعیت روند تغییرات آب‌وهوایی را ارائه می‌دهد. لذا مجموعه‌ای از شاخص‌های ترکیبی ارائه شده توسط گروه بین‌المللی ارزیابی آب‌وهوایی اروپا (ECA&D) ، به‌منظور ترسیم بهتر روند فرین‌های آب‌ وهوایی در گستره ایران استفاده شده است. بر این اساس داده‌های روزانه 47 ایستگاه سینوپتیک کشور در دوره آماری 1981 تا 2015 استخراج و مورد آنالیز قرار گرفت. در این پژوهش شاخص‌های سرد-خشک، سرد-مرطوب، گرم-خشک، گرم-مرطوب، شاخص اقلیم گردشگری و شاخص جهانی حرارتی محاسبه شده است. نتایج این پژوهش نشان دهنده رخداد تغییر اساسی در رفتار مقادیر فرین ترکیبی دما و بارش در سه دهه گذشته است. کاهش در فراوانی حالت‌های سرد و افزایش در فراوانی حالت‌های گرم در بیش از 80 درصد ایستگاه‌ها دیده می‌شود. همچنین، شاخص جهانی دما نیز نشان دهنده افزایش معنی دار فراوانی روزهای با تنش گرمای شدید () و کاهش معنادار فراوانی روزهای بدون تنش گرمایی () است که در مقایسه با سایر شاخص‌های ترکیبی دما و بارش از پیوستگی فضایی مناسبی در سطح ایران برخوردار است. روند شاخص اقلیم گردشگری (TCI)، شامل دو زیر مجموعه، تعداد روزهای با TCI≥60 و تعداد روزهای با TCI≥80 نیز تغییرات مشابهی دارد و پیوستگی ضعیف‌تری را در سطح کشور نشان می‌دهد. بیشینه وردایی معنادار فرین‌های ترکیبی در بخش‌های شمال‌غربی کشور دیده می‌شود که می‌تواند در برنامه‌ریزی برای کاهش آثار سوء و افزایش سازگاری در کشور مورد توجه قرار گیرد. 

کلیدواژه‌ها


AghaKouchak A, Cheng L, Mazdiyasni O, Farahmand A., 2014. Global warming and changes in risk of concurrent climate extremes: Insights from the 2014 California drought.Geophys. Res. Lett41: 8847–8852, doi:10.1002/2014GL062308.
Alexander L, Yang H, Perkins S., 2013. ClimPACT Indices and software. A document prepared on behalf of The Commission for Climatology (CCl) Expert Team on Climate Risk and Sector-Specific Climate Indices (ET CRSCI).
Alexander LV, Zhang X, Peterson TC, Caesar J, Gleason B, Klein Tank AMG, Haylock M, Collins D, Trewin B, Rahim F, Tagipour A, Kumar Kolli R, Revadekar JV, Griffiths G, Vincent L, Stephenson DB, Burn J, Aguilar E, Brunet M, Taylor M, New M, Zhai P, Rusticucci M, Vazquez Aguirre JL,. 2006. Global observedchanges in daily climate extremes of temperature and precipitation. Journal of Geophysical Research-Atmospheres 111: D05109. DOI: 10.1029/2005JD006290.
Alijani, B, Roshani, A, Parak, F and Heidari, R., 2013. Trends in extreme daily temperature using climate change indices in Iran. Geography and environmental hazards, 1 (2), 17-28. doi: 10.22067 / geo.v1i2.18617
Allen G.R, Pereira S.P, Raes D, Smith M., 1998. Crop evapotranspiration-Guideline for computing crop water requirements. FAO - Food and Agriculture Organization of the United Natuins.
Arsenovic P, Tosic I, Unkasevic M., 2013. SEASONAL ANALYSIS OF WARM DAYS IN BELGRADE AND NIS. J. Geogr. Inst. Cvijic. 63(4):(1 10). DOI: 10.2298/IJGI1304001A.
Beniston M. 2011. Trends in joint quantiles of temperature and precipitation in Europe since 1901 and projected for 2100. GEOPHYSICAL RESEARCH LETTERS, VOL. 36, L07707, doi:10.1029/2008GL037119, 2009
Broede P, Fiala D, Blazejczyk K, Holmer I, Jendritzky G, Kampmann B, Tinz B, Havenith G., 2012. Deriving the operational procedure for the Universal Thermal Climate Index (UTCI). Int J Biometeorol.56(3):481–494. doi:10.1007/s00484-011-0454-1
CCSP. 2008. Weather and Climate Extremes in a Changing Climate. Regions of Focus: North America, Hawaii, Caribbean, and U.S. Pacific Islands. A Report by the U.S. Climate Change Science Program and the Subcommittee on Global Change Research. [Thomas R. Karl, Gerald A. Meehl, Christopher D. Miller, Susan J. Hassol, Anne M. Waple and William L. Murray (eds.)]. Department of Commerce, NOAA’s National Climatic Data Center, Washington, D.C., USA, 164 pp.
Estrella N, Menzel A., 2012. Recent and future climate extremesarising from changes to the bivariate distribution of temperature and precipitation in Bavaria, Germany. Int. J. Climatol. 33 1687–95.
Fan L, Chen D., 2016. Trends in extreme precipitation indices across China detected using quantile regression. Atmos. Sci. Let. 17: 400–406.
Filho W.L, Musa H, Cavan G, O'Hare P, Seixas J. 2016. Climate Change Adaptation, Resilience and Hazards. Springer. DOI 10.1007/978-3-319-39880-8.
Hao Z, AghaKouchak A, Phillips T. J., 2013. Changes in concurrent monthly precipitation and temperature extremes. Environ Res Lett. doi:10.1088/17489326/8/3/034014.
IPCC, 2007. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., Miller, H.L. (Eds.), Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 966 pp.
IPCC, 2013. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Stocker, T.F., Qin, D., Plattner, G.K., Tignor, M.M.B., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M. (Eds.), Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 966 pp.
Kanji G.K., 2006. 100 STATISTICAL TESTS. SAGE Publications Ltd, ISBN-13 978 1 4129 2376 7 (Pbk).
Lemke B, Kjellstrom T., 2012. Calculating Workplace WBGT from Meteorological Data: A Tool for Climate Change Assessment. IndustrialHealth.50: 267–278.
Leonard M, Westra S, Phatak A, Lambert M, Hurk V.D B, McInnes K, Risbey J, Schuster S, Jakob D, Stafford-Smith M., 2014. A compound event framework for understanding extreme impacts. WIREs Clim Change.5:113–128. doi: 10.1002/wcc.252.
Leonard M, Westra S, Phatak A, Lambert M, Hurk, B.V.D, McInnes K, Risbey J, Schuster S, Jakob D, Stafford-Smith M., 2014. A compound event framework for understanding extreme impacts. WIREs Clim Change. 5:113–128. doi: 10.1002/wcc.252.
Liu C, Allan R P, Huffman G J., 2012. Co-variation of temperature and precipitation in CMIP5 models and satellite observations. Geophysics. Res. Lett.39 : L13803.
Lopez-Moreno g J.I, Vicente-Serrano S.M, Moran-Tejeda E, Lorenzo-Lacruz J, KenawyA, Beniston M., 2011. Effects of the North Atlantic Oscillation (NAO) on combined temperature and precipitation winter modes in the Mediterranean mountains: Observed relationshi-ps and projections for the 21st century. Global and Planetary Change. 77. 62–76.
Miao C, Sun Q, Duan Q, Wang Y., 2016. Joint analysis of changes in temperature and precipitation on the Loess Plateau during the period 1961–2011. Climate Dynamics.47: 3221. doi:10.1007/s00382-016-3022-x
Mieczkowski Z., 1985. The Tourism Climatic Index: a method of evaluating world climate fortourism. Can Geogr29:220–233.
Pappenberger P, Jendritzky G, Staiger H, Dutra E, Giuseppe F. Di, Richardson D. S, Cloke H. L., 2015. Global forecasting of thermal health hazards: the skill of probabilistic predictions of the Universal Thermal Climate Index (UTCI). Int J Biometeorol.59:311–323.
Parak F, Roshani A, BodaghJamali J., 2015. Trends and Anomalies in Daily Climate Extremes over Iran during 1961–2010. Journal of Environmental and Agricultural Sciences. ISSN: 2313-8629.
Project team ECA&D, Royal Netherlands Meteorological Institute KNMI., 2013. EUMETNET/ECSN optional programme: ’European Climate Assessment & Dataset (ECA&D)’ Algorithm Theoretical Basis Document (ATBD), Version : 10.7.
Rahimzadeh F, Asgari A, Fattahi E., 2009. Variability of extreme temperature and precipitation in Iran during recent decades. Int. J. Climatol. 29:329–343.
Romm., 2015. CLIMATE CHANGE (WHAT EVERYONE NEEDS TO KNOW). Oxford University Press, ISBN-13 978-0190250171.
Tabari H, ShiftehSomee B, RezaeianZadeh M. 2011. Testing for long-term trends in climatic variables in Iran. Atmosph. Res. 100:132 –140.
Vincent L.A, Wang X.L, Milewska E.J, Wan H, Feng Y, Swail V., 2012. A Second Generation of Homogenized Canadian Monthly Surface Air Temperature for Climate Trend Analysis. JGR Atmospheres. 117: D18110, do: 10.1029/2012JD017859.
Wang X. L. L., 2008. Accounting for autocorrelation in detecting mean-shifts in climate data series using the penalized maximal t or F test. J. App. Met. Climatol. 47: 2423-2444.
Wang X.L, Wen Q, Wu Y., 2007. Penalized Maximal t Test for Detecting Undocumented Mean Change in Climate Data Series. Journal of Applied Meteorology and Climatology. DOI: 10.1175/JAM2504.1.
Wang X.L, Y. Feng, published online July., 2013: RHtestsV4 User Manual. Climate Research Division, Atmospheric Science and Technology Directorate, science and Technology Branch, Environment Canada. 28 pp. [Available online at http:etccdi. Pacific climate. Org/software.shtml, http://etccdi.pacificclimate.org/software.shtml.].
World Meteorological Organization, Geneva., 2011. Guide to Climatological Practices. WMO-No. 100.
World Meteorological Organization., 2009. Guidelines on Analysis of extremes in a changing climate in support of informed decisions for adaptation. Climate Data and Monitoring WCDMP-No. 72.
Yue S, Pilon P. and Cavadias G., 2002. Power of teh Mann-Kendall and Spearman’s rho tests for detecting monotonic trends in hydrological series. Journal of Hydrology. 259: 254-271.
Zhang X, Alexander L, Hegerl G.C, Jones P, Tank A.K, Peterson T.C, Trewin B, Zwiers F.W., 2011. Indices for monitoring changes in extremes based on daily temperature and precipitation data. WIREs Clim Change.doi: 10.1002/wcc.147.
CAPTCHA Image