بازسازی فراوانی و سطح سیلابهای قدیمی رودخانه نکا با استفاده از دندروژئومورفولوژی

نوع مقاله : پژوهشی

نویسندگان

1 دانشگاه فردوسی مشهد

2 دانشکده منابع طبیعی دانشگاه تهران

3 تربیت مدرسُ تهران

چکیده

سیلاب ‌به‌عنوان یک فرایند ژئومورفیک رودخانه‌ای بر مورفولوژی درختان حواشی و بستر رود اثر می‌گذارد و منجر به پاسخ‌های رشدی متفاوتی در سری‌ حلقه‌های درخت می‌شود. درختان کج‌شده و زخم‌خورده یکی از رایج‌ترین انواع شواهد دندروژئومورفولوژیکی رخدادهای سیلابی گذشته در حواشی رودخانه‌ها‌ هستند و برای تاریخ‌گذاری و بازسازی رخدادهای ژئومورفیک گذشته مورد استفاده قرار می گیرند. زخم‌های ایجاد شده بر تنه درختان می‌تواند به‌عنوان شاخص های پالئواستیج برای بازسازی سطح و حجم سیلاب های قدیمی بکار رود. هدف این تحقیق بازسازی فراوانی رخدادهای سیلابی و سطح آن‌ها در رودخانه نکا با استفاده از آنالیز حلقه‌های رشد در درختان زخم‌خورده و پاسخ به این فرضیه است که " سطح سیلاب برآوردی از داده‌های دندروژئومورفولوژی در حوضه آبریز نکا بیشتر از داده‌های ایستگاهی است"؛ بنابراین پس از بازدید منطقه و جمع‌آوری داده های اولیه و تعیین موقعیت نمونه‌ها، تعداد 18 نمونه از تنه درختان زخم‌خورده در حاشیه و کناره‌های بستر نکارود برداشت شد. پس از آماده‌سازی نمونه‌ها تعداد و عرض حلقه‌ها با استفاده از میز دیجیتالی LINTAB و برنامه نرم‌افزاری TSAPWIN با دقت 01/0 میلی‌متر شمارش و اندازه‌گیری شد و سال وقوع سیلابها از طریق کاهش ناگهانی در روند افزایشی پهنای حلقه درخت بازسازی گردید؛ اما به‌منظور برآورد سطح سیلاب و تخمین دبی پالئوسیلاب‌ها بالاترین نقاط از بالاترین زخم ها به‌عنوان تخمینی برای دبی اوج در نظر گرفته شد و چهار مقطع عرضی از بستر اصلی رودخانه نقشه‌برداری شد تا ارتفاع سیل بر مبنای زخم‌های تنه درختان برآورد گردد. نتایج نشان داد که بیشترین تعداد زخم‌ها به ترتیب از سیلاب سال‌های 1387 با دبی پیک m3/sec130 و 1378 با دبی پیک m3/sec2000 منشأ گرفته‌اند. علاوه بر این سیل سال 1999 و نیز سیل سال 2003 با دبی پیک m3/sec361 بیشترین تأثیر را در روند رشد درختان حاشیه بستر داشته‌اند. همچنین دو سیلاب دیگر در سال 1320 و 1336 و مربوط به قبل از تأسیس ایستگاه هیدرومتری در منطقه بازسازی شد. این سیلاب‌ها زخم بزرگی را با ارتفاع حد بالایی زخم به طول cm270‌ از سطح زمین، بر روی ساقه درخت بر جای نهاده‌ و سطح سیلاب از طریق این زخم‌ به مقدار 37/4277 مترمکعب در ثانیه برآورد گردید که بزرگ‌ترین دبی سیلابی رودخانه نکا در طی صد سال‌ اخیر است و نشان می‌دهد که دبی‌های سیلابی و پیک رودخانه نکا که از طریق دندروژئومورفولوژی بازسازی شده‌اند بسیار بیشتر از دبی‌های ایستگاهی این رودخانه است.

کلیدواژه‌ها


ارسلانی، محسن؛ عزیزی، قاسم، خوش اخلاق، فرامرز؛ 1391. بازسازی تغییرات دمای حداکثر استان کرمانشاه با استفاده از حلقه‌های درختی. مجله جغرافیا و مخاطرات محیطی. شماره اول. صص 97-110.
ارسلانی، محسن؛ عزیزی، قاسم؛ 1392. بررسی ارتباط بین شاخص نوسان جنوبی (SOI) و بارش بازسازی شده زاگرس میانی. جغرافیا و برنامه ریزی محیطی. سال 24. پیاپی 51. شماره 3. صص41-54.
ارسلانی، محسن؛ 1390. بازسازی تغییرات دما و بارش زاگرس میانی با استفاده از حلقه‌های درخت. پایان نامه کارشناسی ارشد. استاد راهنما: دکتر قاسم عزیزی. دانشگاه تهران. دانشگده جغرافیا. تهران. ایران.
بهرامی، شهرام؛ محبوبی، فاطمه؛ سدیدی، فاطمه؛ جعفری اقدم، مریم؛ 1390. برآورد میزان فرسایش ورقه‌ای، با استفاده از تحلیل دندروژئومورفولوژیکی ریشه‌های درخت در حوضه قره چای (رامیان). پژوهش‌های جغرافیای طبیعی. شماره 75. صص 1-17.
حسین زاده، سیدرضا؛ جهادی طرقی، مهناز؛ 1391. بازسازی سیلا‌ب‌های قدیمی رودخانه سه هزار با استفاده از دندروژئومورفولوژی. جغرافیا و مخاطرات محیطی. شماره 2. صص 29-53.
خدابخش، سعید؛ رحیمی، الهه؛ ماهفروزی، علی؛ رفیعی، بهروز؛ 1385. بررسی نوع رودخانه و روند ریزشوندگی رسوبات حوضه آبریز نکارود. دهمین همایش انجمن زمین‌شناسی ایران. دانشگاه تربیت مدرس. صص2002-2009.
صفایی، مهرداد؛ 1376. بررسی‌های زمین‌شناسی مهندسی و کاربری زمین حوضه آبریز نکا رود. استاد راهنما: علی ارومیه‌ای. پایان‌نامه کارشناسی ارشد. دانشگاه تربیت مدرس. دانشکده علوم. تهران. ایران.
عزیزی، قاسم؛ ارسلانی، محسن؛ ارسلانی، عزت اله؛ صفایی راد، رضا؛ 1391الف. بازسازی دمای بیشینه بهار – تابستان در یال غربی زاگرس میانی با استفاده از یک گاه‌شناسی منطقه‌ای. جغرافیا و مخاطرات محیطی. شماره چهارم. صص 51-64.
عزیزی، قاسم؛ ارسلانی، محسن؛ یمانی، مجتبی؛ 1391ب. بازسازی تغییرات بارش اکتبر تا می شهر کرمانشاه، طی دوره‌ی 2010-1705 با استفاده از حلقه‌های درختی. پژوهش‌های جغرافیای طبیعی. شماره 79. صص 37-53.
عمادالدین، سمیه؛ 1392. بررسی تغییر سطح اساس نکا رود تحت تأثیر نوسانات سطح آب دریای خزر و زمین ساخت البرز. مجله آمایش جغرافیایی فضا. سال سوم. شماره 10. صص 63-79.
Alma, P., Matteo, G., Carlo, U. (2014). Structural attributes, tree-ring growth and climate sensitivity of Pinus nigra Arn at high altitude: common patterns of a possible tree line shift in the central Apennines (Italy). Dendrochronologia, 32, 210–219.
Ballesteros, J.A., Eguibar, M., Bodoque, J.M., Gutierrez-Perez, I., Diez-Herrero, A., Stoffel, M. (2009). Combining dendrogeomorphological and topographical techniques for hydraulic modelling in mountain streams, 18th World IMACS / MODSIM Congress, Cairns, Australia, 2651-2657.
Ballesteros, J.A., Stoffel, M., Bodoque, J.M., Bollschweiler, M., Hitz, O., Diez-Herrerro, A. (2010). Changes in wood anatomy in tree rings of pinus pinaster ait.Following wounding by Flash floods.Tree ring Research, 66 (2), 93-103.
Ballesteros, J.A., Stoffel, M., Bollschwiler, M., Bodoque, J.M., Diez-Herrero, A. (2010). Flash-flood impacts cause changes in wood anatomy of Alnus glutinosa, Fraxinus angustifolia and Quercus pyrenaica. Tree Physiology, 30, 773–781.
Ballesteros, J.A., Stoffel, M., George, S.St., Hirschboeck, K. (2015). A review of flood records from tree rings, Progress in Physical Geography, 1–23, DOI: 10.1177/0309133315608758.
Ballesteros,J.A., Bodoque, J.M., DIez-Herrero, A., Sanchez-Silva, M., Stoffel, M. (2011). Calibration of floodplain roughness and estimation of flood discharge based on tree-ring evidence and hydraulic modeling. Journal of Hydrology, 403, 103–115.
Ballesteros,J.A., Dıez-Herrero, A., Bodoque, J.M. (2012). Searching for useful non-systematic tree-ring data sources for flood hazard analysis using gis tools. Catena, 92, 130–138.
Ballesteros,J.A., Eguibar, M., Bodoque, J.M., Dıez-Herrero, A., Stoffel , M., Gutierrez-Perez, I. (2011).Estimating flash flood discharge in an ungauged mountain catchment with 2D hydraulic models and dendrogeomorphic palaeostage indicators. Hydrological Processes, 25, 970 – 979.
Beriault, Antoine Lucien., 2005. Using tree rings to infer annual stream discharge in the Churchill River basin. A Thesis for the Degree of Master of Science in Geography University of Regina, pp. 93.
Bodoque,J.M., Dıez-Herrero, A., Eguibar, m.A., Benito, G., Ruiz-Villanueva, V., Ballesteros, J.A. (2014). Challenges in paleoflood hydrology applied to risk analysis in mountainous watersheds- a review. Journal of Hydrology, http: //dx.doi.org/10.1016/j.jhydrol.2014.12.004.
Bodoque,J.M., Dıez-Herrero, A., Martın-Duque, J.F., Rubiales, J.M., Godfrey, A., Pedraza , J., Carrasco, R.M., Sanz, M.A. (2005). Sheet erosion rates determined by using dendrogeomorphological analysis of exposed tree roots: Two examples from Central Spain., Catena, 64, 81–102.
Bollschweiler, M., Stoffel, M, Schneuwly, D. M. (2008). Dynamics in debris-flow activity on a forested cone- A case study using different dendroecological approaches. Catena, 72, 67–78.
Boucher, E., Begin, Y., Arseneault, D. (2009). Impacts of recurring ice jams on channel geometry and geomorphology in a small high-boreal watershed. Geomorphology, 108, 273-281.
Braam, R.R., Weiss, E.E.J., Burrough, P.A. (1987). Spatial and temporal analysis of mass movement using dendrochronology. Catena, 14, 573-584.
Butler, D.R., Stoffel, M. (2013). John F. Shroder, Jr.’s 1978 and 1980 papers on dendrogeomorphology. Progress in Physical Geography, 1–5.
Casteller, A., Stoffel, M., Crespo, S., Villalba, R., Corona, C., Bianchi, E. (2015). Dendrogeomorphic reconstruction of flash floods in the Patagonian Andes. Geomorphology, 228, 116–123.
Chen, F., Yuan, Y-j., Wei, W-s., zhang, T-w., Shang, H-m., Zhang, R., 2014. Precipitation
Corona, C., Saez, J. L., Stoffel, M., Bonnefoy, M., Richard, Didier, Astrade, Laurent, Berger, Frederic. 2011. How much of the real avalanche activity can be captured with tree rings? an evaluation of classic dendrogeomorphic approaches and comparison with historical archives. Cold Regions Science and Technology, doi: 10.1016/j. cold regions. 2012.01.003, journal homepage: www.elsevier.com/locate/coldregions.
Daniels, M.D., 2006. Distribution and dynamics of large woody debris and organic matter in a low-energy meandering stream. Geomorphology, 77, 286–298.
De Micco, V., Battipaglia, G., Cherubini, P., Aronne, G., 2014. Comparing methods to analyse anatomical features of tree rings with and without intra-annual density fluctuations (IADFs). Dendrochronologia, 32, 1–6.
Diez-Herrero, A., Ballesteros, J.A., Ruiz-Villanueva, V., Bodoque, J.M., 2013. A review of dendrogeomorphological research applied to flood risk analysis in Spain. Geomorphology, 196, 211–220.
Fantucci, R., Sorriso-Valvo, M., 1999. Dendrogeomorphological analysis of a slope near Lago, Calabria (Italy). Geomorphology, 30, 165–174.
Gartner, H., 2007. Tree roots-Methodological review and new development in dating and quantifying erosive processes. Geomorphology 86, 243–251.
George, S. ST., Nielsen, E., 2002. Hydroclimatic Change in Southern Manitoba Since A.D. 1409 Inferred from Tree Rings. Quaternary Research, 58, 103–111.
George, S.St, Nielsen, E., 2002. Contributions of dendrochronology to flood hazard analysis in the Red River basin Manitoba. In Report of Activities 2002, Manitoba Industry, Trade and Mines, Manitoba Geological Survey, 283–286.
George, S.St, Nielsen, E., 2003. Palaeoflood records for the Red River, Manitoba, Canada, derived from anatomical tree-ring Signatures. The Holocene, 13, 4, 547–555.
George, S.St., Nielsen, E., Conciatori, F., Tardif, J., 2002. Trends in quercus macrocarpa vessel areas and their implication for tree- ring paleoflood studies. Tree Ring research, 58 (1/2), 3 -10.
Glock, W.S., 1951. Cambial frost injuries and multiple growth layers at Lubbock, Texas. Ecology, 32, 28–36.
Gottesfeld, A.S., 1996. British Coilumbia flood scars: maximum flood-stage indicators. Geomorphology, 14, 319-325.
Gottesfeld, A.S., Johnson, L.M. (1990). Floodplain dynamics of a wandering river, dendrochronology of the Morice River, British Columbia, Canada. Geomorphology, 3, 159-179.
Goudie, A.S., 2005. Encyclopedia of Geomorphology. Vo. 1, Routledge Ltd., P. 578.
Komperod, B.A. M., 2009. The impact of climate and flooding on tree ring growth of Fraxinus pennsylvanica in north central TEXAS.Thesis for Degree of Master of Science, university of north TEXAS.
Mei, L., Yunchao, Z., Ke Ke, W. (2011). Response of Anatomical Features of Broadlesf Tree Root in Karst Area to Soil Erosion. Procedia Engineering, 18, 232 – 239.
Merigliano, M.F., Friedman, J.M., Scott, M.L. (2013). Tree ring records of variation in flow and channel geometry. Geomorphology, 12, 145-164.
Mizugaki, Sh., Nakamura, F., Araya, T., 2006. Using dendrogeomorphology and 137Cs and 210 Pb radiochronology to estimate recent changes in sedimentation rates in Kushiro Mire, Northern Japan, resulting from land use change and river channelization. Catena, 68, 25–40.
reconstruction for the southern Altay Mountains (China) from tree rings of Siberian spruce, reveals recent wetting trend. Dendrochronologia, 32, 266–272.
Shah, S.K., Bhattacharyya, A., Chaudhary, V., 2014. Streamflow reconstruction of Eastern Himalaya River, Lachen ‘Chhu’, North Sikkim, based on tree-ring data of Larix griffithiana from Zemu Glacier basin. Dendrochronologiy, 32, 97–106.
Silhan, K., 2015. Frequency, predisposition, and triggers of floods in flysch Carpathians: regional study using dendrogeomorphic methods. Geomorphology, 234, 243–253.
Stoffel, M. (2006). A Review of Studies Dealing with Tree Rings and Rockfall Activity: The Role of Dendrogeomorphology in Natural Hazard Research. Natural Hazards, 39, 51–70.
Stoffel, M., 2011. Tree rings and natural hazards: principles and applications (1). riscuri si catastrofe, NR.X, VOL.9, no. 1, 61-72.
-Stoffel, M., Bollschweiler, M. (2008).Tree-ring analysis in natural hazards research-an overview. Nat. Hazards Earth Syst. Sci, 8, 187–202.
Stoffel, M., Luckman, B.H., Butler, D.R., Bollschweiler, M., 2013. Dendrogeomorphology: dating earth-surface processes with tree rings, In: Shroder, J. (Editor in Chief), Butler, D.R., Hupp, C.R. (Eds.). Treatise on Geomorphology, Academic Press, San Diego, CA. Ecogeomorphology, 12, 125–144.
Strunk, H. (1997). Dating of geomorphological processes using dendrogeomorphological methods. Catena 31, 137-151.
Villanueva, V.R., Diez-Herrero, A., Stoffel, M., Bollschweiler, M., Bodoque, J.M., Ballesteros, J.A., 2010. Dendrogeomorphic analysis of flash floods in a small ungauged mountain catchment (Central Spain). Geomorphology, 118, 383–392.
-Villanueva,V.R., Diez-Herrero, A., Bodoque, J.M., Ballesteros, J.A., Stoffel, M. (2013). Characterisation of flash floods in small ungauged mountain basins of Central Spain using an integrated approach. Catena, 110, 32–43.
Xiong, L., Okada, N., Fujiwara, T. (2000).The dendrochronological potential of ten species in the Three Gorges reservoir region of China. IAWA Journal, 21 (2), 181–196.
Yanosky, T. M., Jarrett, R. D., 2002. Dendrochronologic evidence for the frequency and magnitude of paleofloods, in ancient floods, modern hazards (eds P. K. House, R. H. Webb, V. R. Baker and D. R. Levish. American Geophysical Union, Washington, D. C. doi: 10.1029 /WS 005p0077.
Zielonka, T., Holeksa, J., Ciapała, S. (2008). A reconstruction of flood events using scarred trees in the Tatra Mountains, Poland. Dendrochronologia, 26, 173–183.
CAPTCHA Image