An Analysis on the Impacts of Zagros Heights on Life Cycle of Mesoscal Convective Systems in West of Iran

Document Type : مقاله پژوهشی


1 University of Lorestan

2 Seyed Jamaleddin Asadabadi


1. Introduction
Mountains are the main sources of turbulence and change in the shape of atmospheric flows, and they can cause airflow upward as well as clouds formation and rain through productive mechanisms such as upslope condensation and convection. They also have an important effect on regional and world precipitation turbulence (Banta, 1990; Barros & Lettenmaier, 1994), and can cause severe incidents such as destructive floods (Pastor, Gomez, & Estrella, 2010).
Previous researchers have done numerous studies on mountainous region weather and climate, and cause of precipitation phenomenon using different methods such as numerical modeling of airflow and satellite images. Using RegCM model, Insel, Christopher, Poulsen and Ehlers (2009) have studied the effect of Andes Mountains on convection, precipitation and humidity transformation in South America. They showed that Andes Mountains have lots of effects on humidity transfer between Amazon basin and central Andes, deep convention processes and precipitation across South America through low–level jet (LLJ) and topographical blocking from Pacific Ocean.
Zagros mountain range located in west of Iran plateau is among vast mountain ranges that locates in path of zonory flows with its south-north expansion and can affect those flows.
Therefore, the present study aims to investigate different factors affecting mesoscal convective systems from Zagros heights, and analyze their life cycle dynamic conditions using brightness temperature threshold, area expansion and RegCM4 numerical modeling.
2. Material and Methods
This study was done in an area of about 220000 km2 in west of Iran including Kermanshah, Kurdistan, Hamadan, Khuzestan, Lorestan, Kohgiloyeh and Boyer Ahmad, Ilam, and cheharmahal and Bakhtiari provinces. Using satellite images obtained from infrared band of Meteosat geostationary satellite, GOES and GMS, the mesoscal convective systems and their life cycle were identified.
Regarding that Inoue, Vila, Rajendran, Hhamada, Wu and Machado (2009) proved if we use one colder or warmer threshold, both initiation and dissipation phases may not indicate the life cycle, in this study, brightness temperature threshold of 224 K (Volasco & Fritsch, 1987) and 243 K (Machado, 1998) were used for identifying and analyzing systems life cycle. The researchers have tried to choose some days for this study over which mesoscal convective systems have been made and spent their life cycle without merger or split.
By transfering these systems to GIS environment using area expansion index (∆E) whose validation and viability have been confirmed by Vila, Machado, Laurent, and Velasco (2008) its life cycle was verified (eq. 1).

∆E=(1 δA)/(A δt) (1)
A = the system area in a given time (Tir


ایران‌نژاد، پرویز؛ فرهنگ، احمدی گیوی؛ روزبه، پازوکی؛ 1388. نقش روش‌های متفاوت پارامتر سازی همرفت در شبیه‌سازی میدان‌های دما و بارش زمستانی با مدل منطقه‌ای- اقلیمی RegCM در ایران. مجله فیزیک زمین و فضا. شماره 1. صص 101-120.
بابائیان، ایمان؛ راحله، مدیریان؛ کریمیان، مریم؛ حبیبی، نوخندان؛ 1386. شبیه‌سازی بارش ماه‌های سرد سال‌های 1376 و1379با استفاده از مدل اقلیمی RegCM3. مجله جغرافیا و توسعه. شماره پیاپی 10. صص 72-55.
تاج‌بخش، سحر؛ پروین، غفاریان؛ ابراهیم، میرزایی؛ 1388. روشی برای پیش‌بینی رخداد توفان‌های تندری با طرح دو بررسی موردی. مجله فیزیک زمین و فضا. دوره 35. شماره 4. صص 166-147.
حجازی زاده، زهرا؛ مصطفی، کریمی؛ پرویز، ضیاییان؛ سمیه، رفعتی؛ 1393. بررسی سامانه‌های همرفتی میان‌مقیاس با استفاده از تصاویر دمای درخشندگی در جنوب غرب ایران. نشریه تحقیقات کاربردی علوم جغرافیایی. شماره 3. صص 69-45.
زرین، آذر؛ ۱۳۸۶. تحلیل پرفشار جنب‌حاره‌ای تابستانه بر روی ایران، رساله دکتری جغرافیای طبیعی– گرایش اقلیم‌شناسی. راهنما: قائمی. دانشگاه تربیت مدرس تهران.
سلطان‌زاده، ایمان؛ فرهنگ، احمدی گیوی؛ پرویز، ایران‌نژاد؛ 1386. بررسی سه ماهة تأثیر رشته‌کوه‌های زاگرس بر جریان‌های میان‌مقیاس منطقه شرق زاگرس با استفاده از مدل منطقه‌ای RegCM. مجله فیزیک زمین و فضا. شماره 1. صص 50-31.
علیزاده، امید؛ مجید آزادی؛ عباسعلی، علی‌اکبری بیدختی؛ 1387. بررسی نقش رشته‌کوه البرز در تقویت سامانه‌های همدیدی. مجله فیزیک زمین و فضا. شماره 1. صص 24-9.
مدیریان، راحله؛ کریمیان، مریم؛ باباییان، ایمان؛ 1384. شبیه‌سازی بارش‌های مونسانی جنوب شرق ایران با استفاده از مدل اقلیمی RegCM3. همایش پیش‌بینی وضع هوا.
مدیریان، راحله؛ کریمیان، مریم؛ باباییان، ایمان؛ 1388. پیکربندی بهینه مدل RegCM3 برای شبیه‌سازی بارش و دما در فصل پاییز منطقه خراسان. پژوهش‌های جغرافیای طبیعی. شماره 70. صص 120-107.
Ahmadi Givi, F., Irannejad, P., & Soltanzadeh, I. (2005). A study of the effects of Zagros mountain ranges on mesoscale westerly currents usin RegCM. The First Iran-Korea Joint Workshop on Climate Modeling, November 16-17 2005.
Banta, R. (1990). The role of mountain flows in making clouds. Meteorological Monographs, 23, 229–283.
Barros, P., & Lettenmaier, P.(1994). Dynamic modelling of orographically induced precipitation. Reviews of Geophysics, 32, 265–284.
Futyan, J. M., & Del Genio, A, D. (2007). Deep convective system evolution over Africa and the tropical Atlantic. Journal of Climate, 20, 5041-5060.
Holton, J. R. (2004). An introduction to dynamic meteorology (4th ed.). The Netherlands: Elsevier Academic Press.
Inoue, T, D., Vila, K., Rajendran, A., Hhamada, X., Wu, A.,& Machado, T. (2009). Life cycle of deep convective systems over the Eastern Tropical Pacific observer by TRMM and GOES-W. Journal of the Meteorological Society of Japan, 87 (A), 381-391.
Insel, N., Christopher, J., Poulsen, T., & Ehlers, A. (2009). Influence of the Andes Mountains on South American moisture transport, convection, and precipitation. Climate Dynamic,19, 143-159. DOI 10.1007/s00382-009-0637-1.
Morel, C., & Senesi, S. (2002). A climatology of mesoscale convective systems over Europe using satellite infrared imagery I: Methodology. Quarterly Journal of the Royal Meteorological Society, 128, 1953–1971.
Morel, C., & Senesi, S. (2002). A Climatology of Mesoscale Convective Systems over Europe using satellite infrared imagery II: Characteristics of European Mesoscale Convective Systems. Quarterly Journal of the Royal Meteorological Society, 128, 1973–1995.
Pastor, F., Gomez, I., & Estrella, M, J. (2010). Numerical study of the October 2007 flash flood in the Valencia region (Eastern Spain): the role of orography. Natural Hazards and Earth System Sciences, 10, 1331–1345.
Silva Dias, M., & Coauthors, A. (2002). Cloud and rain processes in a biosphere–atmosphere interaction context in the Amazon region. Jornal of Geophys, 107, 8072, doi:10.1029/2001JD000335.
Velasco, J., & Fritsch, M. (1987). Mesoscale convective complexes in the Americas. Journal of Geophysical Research, 92, (8), 9591–9613.
Vila, D, A., Machado, T., Laurent, H., & Velasco, I. (2008). Forecast and Tracking the Evolution of Cloud Clusters (ForTraCC) Using Satellite Infrared Imagery: Methodology and Validation. Weather and Forecasting, 23, 233-245. dio:10.1175/2007WAF2006121.
Wang, Y., Sen, O, L., & Wang, B. (2002). A highly resolved regional climate model and its simulation of the 1998 sever precipitation event over China, Part 1: Model description and verification of simulation. Journal of Climate, 19, 1721-1738.