The Impact of Solifluctions in Daronagar River basin on Physical and Chemical Properties of Soil

Document Type : Research Article


1 PhD Candidate in Geomorphology, Ferdowsi University of Mashhad, Mashhad, Iran

2 Associate Professor in Geomorphology, Ferdowsi University of Mashhad, Mashhad, Iran

3 Professor in Soil Science, Ferdowsi University of Mashhad, Mashhad, Iran


Solifluction is the displacement of mud crust on surface of fixed foundation that occurs in areas near glaciers and mountains, which is underestimated as a natural disturbance factor and its ecological role in maintaining biodiversity is ignored. This process affects the denudation of mountains less than fast processes (landslides) and geochemical transitions, but due to its extent, has a great impact on the evolution of mountain landscapes. In order to investigate the physical and chemical properties of different solifluction soils, 4 sites were selected in the Daronagar River basin, located in the north-east Iran, based on the lobe or terrace type. Then, sampling was done from different microtopography, including the riser, tread and ridge parts. Texture, organic carbon, available phosphorus and potassium, pH, electrical conductivity, equivalent calcium carbonate, saturated moisture, soil stability, and porosity were then measured. The results showed that the impact of investigated factors on soil porosity and available phosphorus was not significant. In other studied characteristics, only the simple effect of the type of the studied site was significant. The values of pH, electrical conductivity, saturated moisture, and available potassium in Sites 1 and 2 were lower compared to the other two sites and there was a significant difference. This trend was the opposite in terms of organic carbon, soil stability and equivalent calcium carbonate. The highest value of these parameters was observed in terrace-type solifluctions. It seems that the impact of soil displacement in all types of solifluctions, as well as mutual relationship of some soil characteristics and their effect on each other caused the emergence of different characteristics in the investigated solifluctions.

Graphical Abstract

The Impact of Solifluctions in Daronagar River basin on Physical and Chemical Properties of Soil


Main Subjects

احمدی، حسن؛ 1379. ژئومورفولوژی کاربردی: فرسایش آبی. جلد اول. موسسه چاپ و انتشارات دانشگاه تهران.
امامی، سید نعیم؛ جلالیان، احمد؛ خسروی، عباس؛ 1395. نقش ویژگی‌های فیزیکی و شیمیایی خاک در وقوع زمین‌لغزش (مطالعه موردی: منطقه افسرآباد چهارمحال و بختیاری). پژوهشنامه مدیریت حوزه آبخیز. سال هفتم. شماره 13. 10.18869/acadpub.jwmr.7.13.192
رفاهی، حسینقلی. (1394). فرسایش آبی و کنترل آن. دانشگاه تهران.
قهرودی، منیژه؛ عادلی، زهرا؛ صدوق، سید حسن؛ 1400. روابط بیوژئومورفولوژی بین پوشش گیاهی، خاک، و عناصرلندفرمی (مطالعه موردی حوضه حبله رود). فصلنامه پژوهش‌های جغرافیای طبیعی. دوره53. شماره 3.
محمودی، فرج‌الله؛ 1379. ژئومورفولوژی دینامیک. انتشارات دانشگاه پیام نور.
Benedict JB.1976. Frost creep and gelifluction features: a review. Quaternary Research. 6(1):55-76.
Beylich, A. A., 2008. Sediment fluxes and sediment budget in Latnjavagge and the potential of applying unified methods for integrating investigations on sediment fluxes and budgets in cold-environment catchments. Geology for Society. Geological Survey of Norway Special Publication, 11, 111-130.
Bouyoucos GJ. 1962. Hydrometer method improved for making particle size analyses of soils 1. Agronomy journal. 54(5): 464-475. https:// 10.2134/ agronj1962. 0002196200 5400050028x.
Brockett BF, Prescott CE, Grayston SJ., 2012. Soil moisture is the major factor influencing microbialcommunity structure and enzyme activities across seven biogeoclimatic zones in western Canada. Soil biology and biochemistry. 44(1): 9-20. https:// 10.1016/ j.soilbio. 2011.09.003
Cannone N, Guglielmin M., 2010. Relationships between periglacial features and vegetation development in Victoria Land, continental Antarctica. Antarctic Science. 22(6):703-13.
Carter MR, Gregorich EG., 2007. Soil sampling and methods of analysis. CRC press.
Cullen CA, Al Suhili R, Aristizabal E. A., 2022. Landslide Numerical Factor Derived from CHIRPS for Shallow Rainfall Triggered Landslides in Colombia. Remote Sensing. 14(9): 22-39.
Eichel J, Draebing D, Kattenborn T, Senn JA, Klingbeil L, Wieland M, Heinz E., 2020. Unmanned aerial vehicle‐based mapping of turf‐banked solifluction lobe movement and its relation to material, geomorphometric, thermal and vegetation properties. Permafrost and Periglacial Processes. 31(1):97-109.
Ekwue EI, Bartholomew J., 2011. Electrical conductivity of some soils in Trinidad as affected by density, water and peat content. Biosystems Engineering. 108(2): 95-103.
Estefan G, Sommer R, Ryan J., 2013. Methods of soil, plant, and water analysis. A manual for the West Asia and North Africa region, 3: 65-119.
French H.M., 1996. The Periglacial Environment, 2nd ed. Longman, Essex. 341 pp.
Haussmann N, Boelhouwers J, McGeoch M., 2009a. Fine scale variability in frost cycle dynamics surrounding cushions of the dominant vascular plant species (Azorella selago) on Marion  Island. Geografiska Annaler. 91: 257–268. 10.1016/j.geomorph.2008.12.002.
Haussmann N, McGeoch M, Boelhouwers J., 2009b. Interactions between a cushion plant (Azorella selago) and surface sediment transport on sub-Antarctic Marion Island. Geomorphology. 107: 139–148.
Haussmann NS. 2011. Biogeomorphology: Understanding different research approaches. Earth Surf. Process. Landforms. 36: 136–138.
Heil K, Schmidhalter U., 2017. The Application of EM38: Determination of Soil Parameters, Selection of Soil Sampling Points and Use in Agriculture and Archaeology. Sensors 17: 25-40.
Hjort, J., Ujanen, J., Parviainen, M., Tolgensbakk, J., Etzelmüller, B., 2014. Transferability of geo­morphological distribution models: evaluation using solifluction features in subarctic and Arctic regions. Geomorphology 204, 165–176. https:// 10.1016/ j.geomorph. 2013.08.002
Jensen JL, Schjønning P, Christensen BT, Munkholm LJ., 2016. Suboptimal fertilisation compromises soil physical properties of a hard-setting sandy loam. Soil Research,  55(4): 332-340.
Jensen JL, Schjønning P, Watts CW, Christensen BT, Peltre C, Munkholm LJ., 2019. Relating soil C and organic matter fractions to soil structural stability. Geoderma,  337: 834-843.
Kellerer-Pirklbauer A., 2018. Solifluction rates and environmental controls at local and regional scales in central Austria. Norsk Geografisk Tidsskrift-Norwegian Journal of Geography, vol. 72(1): 37-56.
Kemper WD, Rosenau RC., 1986. Aggregate stability and size distribution. Pp. 425-442. In: Klute A (ed). Methods of Soil Analysis, Part 1, Physical and Mineralogical Methods. 10.2136/sssabookser5.1.2ed
Lajili A, Cambouris AN, Chokmani K, Duchemin M, Perron I, Zebarth BJ, Biswas A, AdamchukVI., 2021. Analysis of Four Delineation Methods to Identify Potential Management Zones in a Commercial Potato Field in Eastern Canada. Agronomy. 11: 4-32.
le Roux P, Boelhouwers J, Davis JD, Haussmann N, Jantze E, Meiklejohn I. 2011. Spatial association of rodent burrows with landforms in the Swedish subArctic mountains: implications for periglacial feature stability. Arctic, Antarctic and Alpine Research. 43: 223–228.
Loeppert RH, Suarez DL., 1996. Carbonate and gypsum. Methods of soil analysis. 3: 437-474.  https:// cgi/ viewcontent.cgi? article=1509&context= usdaars facpub
Lundgren L., 1978. Studies of soil and vegetation development on fresh landslide scars in the Mgeta Valley, Western Uluguru Mountains, Tanzania. Geografiska Annaler. Series A, Physical Geography, 60: 91–127. https:// stable/ 520435? Type Access Workflow=login.
Masyagina OV, Evgrafova SY, Bugaenko TN, Kholodilova VV, Krivobokov LV, Korets MA, Wagner D., 2019. Permafrost landslides promote soil CO2 emission and hinder C accumulation. Science of the Total Environment, 657: 351-364. https:// 10.1016/ j.scitotenv. 2018.11. 468
Matsuoka N., 2001. Solifluction rates, processes and landforms: a global review. Earth-Science Reviews, 55(1-2): 107-134.
Novais W, Rodríguez-Mejías JC, Perret J, Soto C, Villalobos JE, Fuentes CL, Abdalla K., 2019. Calibration and validation of Veris MSP3 on two soils in Guanacaste, Costa Rica Agronomía Mesoamericana. 30(2): 535-551.
Olsen, S.R. and Sommers, L.E., 1982. Phosphorus. In: Page, A.L., Ed., Methods of Soil Analysis Part 2 Chemical and Microbiological Properties, American Society of Agronomy, Soil Science Society of America, Madison, 403-430. https:// doi/book/ 10.2134/ agronmonogr9.2.2ed
 Pansu M, Gautheyrou J., 2007. Handbook of soil analysis: mineralogical, organic and inorganic methods. Springer Science & Business Media.
Price LW., 1971. Vegetation, microtopography, and depth of active layer on different exposures in subarctic Alpine tundra. Ecology. 52: 638–647. 10.2307/1934152.
Prokushkin SG, Bugaenko TN, Prokushkin AS, Shikunov VG., 2010. Succession driven Transformation of Plant and Soil Cover on Solifluction Sites in the Permafrost Zone of Central Evenkia. 10.1134/S1062359010010115.
Qu W, Han G, Wang J, Li J, Zhao M, He W, Wei S., 2021. Short-term effects of soil moisture on soil organic carbon decomposition in a coastal wetland of the Yellow River Delta. Hydrobiologia, 848(14):3259-3271.
Reddy VS, Singh JS. 1993. Changes in vegetation and soil during succession following landslide disturbance in the Central Himalaya. J. Environ. Manag. 39: 235–250. https:// 10.1006/jema.1993.1068
Ridefelt, H., Etzelmüller, B., & Boelhouwers, J., 2010. Spatial analysis of solifluction landforms and process rates in the Abisko Mountains, northern Sweden. Permafrost and periglacial processes, 21(3), 241-255.
Rose JP, Malanson GP., 2012. Microtopographic heterogeneity constrains alpine plant diversity, Glacier National Park, MT. Plant Ecology. 213(6): 955-965. https:// stable/ 23267480? typeAccessWorkflow=login
Van Eyndea E, Dondeynea S, Isabiryeb  M, Deckersa  J,  Poesen J., 2017. Impact of landslides on soil characteristics: Implications for estimating their age, Catena 157. https:// 10.1016/ j.catena.2017.05.003
Verpaelst, M., Fortier, D., Kanevskiy, M., Paquette, M., & Shur, Y., 2017. Syngenetic dynamic of permafrost of a polar desert solifluction lobe, Ward Hunt Island, Nunavut. Arctic Science, 3(2), 301-319.
Völkel J, Huber J, Leopold M., 2011. Significance of slope sediments layering on physical characteristics and interflow within the Critical Zone–Examples from the Colorado Front Range, USA. Applied Geochemistry, 26:143-145. https:// 10.1016/ j.apgeochem. 2011.03.052
Walker LR, Shiels AB., 2013. Physical Causes and Consequences. Landslide Ecology. Cambridge University Press, Cambridge, 4: 46–81. https:// icwdm_usdanwrc/ 1640/ ? 2Ficwdm_usdanwrc%2 F1640&utm medium= PDF&utm_campaign=PDFCoverPages
Walkley A, Black IA., 1934. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil science,  37(1): 29-38.
Zarin DJ, Johnson AHA., 1995. Base saturation, nutrient cation, and organic matter increases during early pedogenesis on landslide scars in the Luquillo Experimental Forest, Puerto Rico. Geoderma. 65: 317–330.