Land Subsidence Hazard Zoning in Hashtgerd Plain based on Integrated Multi-Criteria Decision-Making Approach: WOI-BWM

Document Type : Subsidence as a global challenge: Crisis management or management crisis


1 PhD Candidate in Environmental Science, Department of Environmental Science, Faculty of Natural Resources and Environment, Science and Research Branch, Islamic Azad University, Tehran, Iran

2 Assistant Professor, Department of Environmental Science, Faculty of Natural Resources and Environment, Science and Research Branch, Islamic Azad University, Tehran, Iran

3 Associate Professor, Soil Conservation and Watershed Management Research Institute, Agricultural Research Education and Extension Organization, Science and Research Branch, Islamic Azad University, Tehran, Iran


The occurrence of land subsidence phenomenon and its potential hazards in the plains of Iran due to the water crisis and drought period has grown significantly in recent years. In this study, the zoning of land subsidence hazard in the Hashtgerd plain was discussed and 19 criteria were selected as factors that influence the subsidence. The mentioned layers were prepared in GIS, weighted based on the best-worst method (BWM) and integrated using the Weighted Overlay Index (WOI). The results of BWM method showed that groundwater abstraction (0.219), the type of geological formation (0.157), the decrease of groundwater level (0.079), and groundwater depth (0.078) are important factors on the potential of subsidence hazard in the study area. Moreover, in order to evaluate the results of this model, the ROC curve was used, which has an accuracy of 90%. The results showed that land subsidence hazard of 10.66% of the study area was in very low category, 38.51% in low category, 31.49% in medium category, 11.66% in high category and 7.69% is in the very high category. According to the results, there are areas with a high probability of subsidence in the central part of Hashtgerd Plain, which requires continuous evaluation, controling, and monitoring of the criteria that affect the situation.

Graphical Abstract

Land Subsidence Hazard Zoning in Hashtgerd Plain based on Integrated Multi-Criteria Decision-Making Approach: WOI-BWM


ابراهیمی، عطرین؛ قاسمی، افشان؛ گنجائیان، حمید؛ 1399. پایش میزان فرونشست محدوده شهری پاکدشت با استفاده از روش تداخل‌سنجی راداری. جغرافیا و روابط انسانی. دوره 2. شماره 4. صص 41-29.
پژوهشکده مطالعات و تحقیقات منابع آب؛ 1392. پیش‌بینی فرونشست ناشی از بهره‌برداری از منابع آب زیرزمینی با استفاده از مدل‌سازی ترکیبی و تکنیک تداخل‌سنجی در تصاویر ماهواره‌ای راداری. مؤسسه تحقیقات آب.
سازمان زمین شناسی و اکتشافات معدنی کشور؛ 1386. گزارش آب زمین‌شناسی دشت هشتگرد- طرح فرونشست زمین در محدوده استان تهران (جلد دوم). شرکت توسعه علوم زمین.
شریفی‌کیا، محمد؛ افضلی، عباسعلی؛ شایان، سیاوش؛ 1394. استخراج و ارزیابی اثرات پدیده‌های ژئومورفولوژیک ناشی از فرونشست در دشت دامغان. پژوهش‌های ژئومورفولوژی کمّی. سال چهارم. شماره 2. صص 74-60.
شریفی‌کیا، محمد؛ مال امیری، نعمت؛ شایان، سیاوش؛ 1392. سنجش آسیب‌پذیری سکونت‌گاه‌ها و تأسیسات از مخاطره مورفولوژیکی فرونشست در بخشی از جنوب شهر تهران. جغرافیا و مخاطرات محیطی. دوره 2. شماره 1. صص 106-91.
شفیعی، نجمه؛ مختاری، لیلا گلی؛ امیراحمدی، ابوالقاسم؛ زندی، رحمان؛ 1398. بررسی فرونشست آبخوان دشت نورآباد با استفاده از روش تداخل‌سنجی راداری. پژوهش‌های ژئومورفولوژی کمی. سال هشتم. شماره 4. صص 111-93.
عابدینی، موسی؛ آقایاری، لیلا؛ اصغری، صیاد؛ 1401. ارزیابی و پهنه‌بندی خطرفرونشست با استفاده از الگوریتم تطبیقی MABAC و ANP (مطالعه‌ موردی: دشت اردبیل). جغرافیا و مخاطرات محیطی. دوره 10. شماره 2. صص 136-155.
محرمی، میثم؛ ارگانی، میثم؛ 1399. پتانسیل‌یابی مناطق مستعد زمین‌لغزش با استفاده از مدل FBWM (مطالعة موردی: شهر تبریز). آمایش سرزمین. دوره 12. شماره 2. صص 593-571.
مهرابی، علی؛ غضنفرپور، حسین؛ 1398. پایش روند تغییرات ارتفاعی سطح زمین در شهر کرمان و تعیین مناطق پرخطر با استفاده از تصاویر راداری ASAR و SENTINEL 1. جغرافیا و مخاطرات محیطی. دوره 8. شماره 2. صص 182-167.
ندیری، عبدالله؛ طاهری، زینب؛ برزگری، قدرت؛ دیده‌بان، خلیل؛ 1397. ارائه چارچوبی برای تخمین پتانسیل فرونشست آبخوان با استفاده از روش الگوریتم ژنتیک. تحقیقات منابع آب ایران. دوره 14. شماره 2. صص 194-182.
نگهبان، سعید؛ پی سوزی، تینا؛ گنجائیان، حمید؛ نوروزی، میلاد؛ 1400. شناسایی مناطق مستعد وقوع زمین‌لغزش و جابجایی عمودی با استفاده از تصاویر راداری (مطالعه موردی: محدوده شهری و حاشیه شهری لواسان). جغرافیا و مخاطرات محیطی. دوره 10. شماره 3. صص 18-1.
Abidin H.Z, Andreas H, Gumilar I, Sidiq T.P, Gamal M., 2015. Environmental impacts of land subsidence in urban areas of Indonesia. In FIG Working Week (pp. 1-12). Sofia, Bulgaria: TS 3-Positioning and Measurement.
Arabameri A, Lee, S, Rezaie F, Chandra Pal S, Asadi Nalivan O, Saha A, Chowdhuri I, Moayedi H., 2021. Performance evaluation of GIS-based novel ensemble approaches for land subsidence susceptibility mapping. Frontiers in Earth Science, 9, 307. https:// 10.3389/ feart.2021.663678
Chen, B., Gong, H., Lei, K., Li, J., Zhou, C., Gao, & M., et al., 2019. Land subsidence lagging quantification in the main exploration aquifer layers in Beijing plain, China. Applied Earth Observation and Geoinformation, 75, 54-67.
Conforti M, Muto F, Rago V, Critelli S., 2014. Landslide inventory map of north-eastern Calabria (South Italy), Maps, 10(1), 90-102.
Desir G, Gutiérrez F, Merino J, Carbonel D, Benito-Calvo A, Guerrero J, Fabregat I., 2018. Rapid subsidence in damaging sinkholes: measurement by high-precision leveling and the role of salt dissolution. Geomorphology, 503, 393-409. https:// 10.1016/ j. geomorph.2017.12.004
Faunt C.C, Sneed M, Traum J, Brandt J.T., 2016. Water availability and land subsidence in the Central Valley, California, USA. Hydrogeology, 24(3), 675–684. https:// 10.1007 /s10040-015-1339-x
Galloway D.L, Jones D.R, Ingebritsen S.E., 1999. Land subsidence in the United States (Vol. 1182). US Geological Survey.
Galloway, D. L., 2013. Subsidence induced by underground extraction. Encyclopedia of Natural Hazards, Springer, 979-985.
Ghorbanzadeh O, Blaschke T, Aryal J, Gholaminia K., 2020. A new GIS-based technique using an adaptive neuro-fuzzy inference system for land subsidence susceptibility mapping. Spatial Science, 65(3), 401-418.
Hakim W.L, Achmad A.R, Lee C.W., 2020. Land subsidence susceptibility mapping in jakarta using functional and meta-ensemble machine learning algorithm based on time-series InSAR data. Remote Sensing, 12(21), 3627-3653.
Hu B, Zhou J, Wang J, Chen Z, Wang D, Xu S., 2009. Risk assessment of land subsidence at Tianjin coastal area in China, Environmental Earth Sciences. 59(2), 269-276.
Huang B, Shu L, Yang Y.S., 2012. Groundwater overexploitation causing land subsidence: hazard risk assessment using field observation and spatial modeling. Water Resources Management, 26(14), 4225-4239.
Jeanne P, Farr T.G, Rutqvist J, Vasco D.W., 2019. Role of agricultural activity on land subsidence in the San Joaquin Valley, California. Hydrology, 569, 462-469. https:// 10.1016/j.jhydrol.2018.11.077
Modoni G, Darini G, Spacagna R.L, Saroli M, Russo G, Croce P., 2013. Spatial analysis of land subsidence induced by groundwater withdrawal. Engineering Geology, 167, 59-71.
Mohammadi M, Pourghasemi H.R, Amiri M., 2019. Assessment of land subsidence susceptibility in Semnan plain (Iran): A comparison of support vector machine and weights of evidence data mining algorithms. Natural Hazards, 99(2), 951-971. https:// 10.1007/ s11069-019-03785-z
Mokhtari M, Abedian S., 2019. Spatial prediction of landslide susceptibility in Taleghan basin, Iran. Stochastic Environmental Research and Risk Assessment, 33(7), 1297-1325.
Nadiri A.A, Taheri Z, Khatibi R, Barzegari G, Dideban K., 2018. Introducing a new framework for mapping subsidence vulnerability indices (SVIs): ALPRIFT. Science of the Total Environment, 628, 1043-1057.
Navarro-Hernández M.I, Tomás R, Lopez-Sanchez J.M, Cárdenas-Tristán A, Mallorquí J.J., 2020. Spatial Analysis of Land Subsidence in the San Luis Potosi Valley Induced by Aquifer Overexploitation Using the Coherent Pixels Technique (CPT) and Sentinel-1 InSAR Observation. Remote Sensing, 12(22), 3822.
Pacheco J, Arzate J, Rojas E, Arroyo M, Yutsis V, Ochoa G., 2006. Delimitation of ground failure zones due to land subsidence using gravity data and finite element modeling in the Quere ´taro valley, Mexico. Engineering Geology, 84(3), 143-160. https://  10.1016/ j.enggeo.2005.12.003
Piscopo G., 2001. Groundwater vulnerability map explanatory Notes-Castlereagh Catchment. NSW Department of Land and Water Conservation, Australia. http:// www. water. nsw. __data/  assets/pdf_file/0008/549377/
Pradhan B, Abokharima M.H, Jebur M.N, Tehrany M.S., 2014. Land subsidence susceptibility mapping at Kinta Valley (Malaysia) using the evidential belief function model in GIS. Natural Hazards, 73(2), 1019-1042. quality_ groundwater_ castlereagh_map_notes.pdf
Rahmati O, Falah F, Naghibi S.A, Biggs T, Soltani M, Deo R.C, Artemi C, Mohammadi F, Bui D.T., 2019. Land subsidence modeling using tree-based machine learning algorithms. Science of The Total Environment, 672, 239–252. https:// 10.1016/ j.scitotenv .2019.03.496
Rahnema H,  Mirassi S., 2016. Study of land subsidence around the city of Shiraz, Scientia Iranica. Scientia Iranica, 23(3), 882-895.
Ranjgar B, Razavi-Termeh S.V, Foroughnia F, Sadeghi-Niaraki A, Perissin D., 2021. Land subsidence susceptibility mapping using persistent scatterer SAR interferometry technique and optimized hybrid machine learning algorithms. Remote Sensing, 13(7), 1326.
Rezaei J., 2016. Best-worst multi-criteria decision-making method: Some properties and a linear model. Omega, 64, 126-130.
Sadeghfam S, Khatibi R, Dadashi S, Nadiri A.A., 2020. Transforming subsidence vulnerability indexing based on ALPRIFT into risk indexing using a new fuzzy-catastrophe scheme. Environmental Impact Assessment Review, 82, 106352. https:// 10.1016 /j.eiar.2019.106352
Shrestha P.K, Shakya N.M, Pandey V.P, Birkinshaw S.J, Shrestha S., 2017. Model-based estimation of land subsidence in Kathmandu Valley, Nepal. Geomatics Natural Hazards Risk, 8(2), 974–996.
Sopata P, Stoch T, Wójcik A, Mrocheń D., 2020. Land Surface Subsidence Due to Mining-Induced Tremors in the Upper Silesian Coal Basin (Poland)-Case Study. Remote Sensing, 12(23), 3923.
Tafreshi G.M, Nakhaei M, Lak R., 2019. Land subsidence risk assessment using GIS fuzzy logic spatial modeling in Varamin aquifer, Iran. GeoJournal, 86(38), 1-21. https:// 10.1007/ s10708-019-10129-8
Tosi L, Teatini P, Strozzi T., 2013. Natural versus anthropogenic subsidence of Venice. Scientific reports, 3(1), 1-9.
UNESCO., 2018. Proposal for the establishment of the land subsidence international initiative (LaSII), United Nations Educational, Scientific and Cultural Organization, Paris. https://
Wang Y. Q, Wang Z. F, Cheng W. C., 2019. A review on land subsidence caused by groundwater withdrawal in Xi’an, China. Bulletin of Engineering Geology and the Environment, 78(4), 2851-2863.
Zhang H, Yu J, Du C, Xia J, Wang X., 2019. Assessing risks from groundwater exploitation and utilization: Case study of the Shanghai megacity, China. Water, 11(9), 1775.
Zheng Y.Y, Chen Y.L, Lin H.R, Huang S.Y, Yeh T.C, Wen J.C., 2017. A Simple Model to Describe the Relationship among Rainfall, Groundwater and Land Subsidence under a Heterogeneous Aquifer. In AGU Fall Meeting Abstracts, (Vol. 2017, pp. H34A-08).
Zhou C, Gong H, Chen B, Gao M, Cao Q, Cao J, Duan L, Junjie J, Shi, M., 2020. Land subsidence response to different land use types and water resource utilization in Beijing-Tianjin-Hebei, China. Remote Sensing, 12(3), 457-479.