Evaluation of Dust Emission Potential of Geomorphology Classes in Ilam Province with an Emphasis on Land Use Change

Document Type : Research Article


1 PhD in Geomorphology, Department of Geography, Faculty of Literature and Humanities, Razi University, Kermanshah, Iran

2 Associate Professor, Department of Geography, Geomorphology, Faculty of Literature and Humanities, Razi University, Kermanshah, Iran

3 Assistant Professor, Department of Geography, Geomorphology, Faculty of Literature and Humanities, Razi University, Kermanshah, Iran


Dust entrainment, transport, and deposition are important geomorphic surface processes that have adverse environmental effects and consequences. Various natural environments are resistant to wind erosion until they lose their stability. When human activities change the stability of the geomorphic surfaces, areas prone to wind erosion and the potential for dust emission increases. This study tried to evaluate the dust emission potential of geomorphology classes in Ilam province with an emphasis on land use change. For this purpose, at first, the geomorphology map was produced based on the preferential dust sources (PDS) geomorphic classification scheme with a combination of remote sensing data and a number of thematic maps (lithology and soil). Then, using Landsat 7 (ETM +) and Landsat 8 (OLI) images, land use was extracted for 2000 and 2015, respectively. By comparing them, then, a land use change map was produced. Finally, the land use change map was overlaid on the geomorphology map to determine the status of land use change in each geomorphology class. The results showed that in Ilam province there are 6 classes of geomorphology based on the preferential dust sources (PDS) geomorphic classification scheme. In most of these classes, the most important change of land use that has taken place has been the change of land use from rangeland to agriculture. Although geomorphology classes of 2a, 3c and 7 have little potential for dust emission, land use change not only in these three classes but also in other geomorphology classes has increased the dust emission potential of geomorphology classes.

Graphical Abstract

Evaluation of Dust Emission Potential of Geomorphology Classes in Ilam Province with an Emphasis on Land Use Change


بوچانی، محمدحسین؛ فاضلی، داریوش؛ 1390. چالش‌های زیست‌محیطی و پیامدهاى ناشى از آن ریزگردها و پیامدهاى آن در غرب کشور ایران. فصلنامه ره­نامه سیاستگذاری سیاسی. دفاعی و امنیتی. سال 2. شماره 3. 125-145.https://www.magiran.com/paper/1080323
طائی سمیرمی، سیاوش؛ مرادی، حمیدرضا؛ خداقلی، مرتضی؛ احمدی آخورمه، مریم؛ 1392. شناخت و بررسی عوامل مؤثر بر پدیده گردوغبار در غرب ایران. فصلنامه انسان و محیط‌زیست. دوره 11. شماره 4. 1- 10.https://he.srbiau.ac.ir/article_3276.html?lang=fa
Ahmadi-Molaverdi, M., Jabbari, I., Fathnia, A. 2021. Relationship Between Land Use Changes and the Production of Dust Sources in Kermanshah Province, Iran. Chinese Geographical Science, 31(6), 1057-1069. https://doi.org/10.1007/s11769-021-1235-3
Azizi, G., Shamsipour, A., Miri, M., Safarrad, T. 2012. Synoptic and remote sensing analysis of dust events in southwestern Iran. Natural hazards, 64(2), 1625-1638. https://doi.org/10.1007/s11069-012-0328-9
Baddock, M. C., Bullard, J. E., Bryant, R. G. 2009. Dust source identification using MODIS: a comparison of techniques applied to the Lake Eyre Basin, Australia. Remote Sensing of Environment, 113(7), 1511-1528. https://doi.org/10.1016/j.rse.2009.03.002
Baddock, M. C., Gill, T. E., Bullard, J. E., Acosta, M. D., Rivera Rivera, N. I. 2011. Geomorphology of the Chihuahuan Desert based on potential dust emissions. Journal of Maps, 7(1), 249-259. https://doi.org/10.4113/jom.2011.1178
Baddock, M. C., Ginoux, P., Bullard, J. E., Gill, T. E. 2016. Do MODIS‐defined dust sources have a geomorphological signature?. Geophysical Research Letters, 43(6), 2606-2613. https://doi.org/10.1002/2015GL067327
Baghbanan, P., Ghavidel, Y., Farajzadeh, M. 2021. Spatial Analysis of the Temporal Long-Term Variations in Frequency of Dust Storm Days in Iran. Pure and Applied Geophysics, 178(10), 4181-4194. https://doi.org/10.1007/s00024-021-02820-0
Boloorani, A. D., Kazemi, Y., Sadeghi, A., Shorabeh, S. N., Argany, M. 2020. Identification of dust sources using long term satellite and climatic data: A case study of Tigris and Euphrates basin. Atmospheric Environment, 224, 117299. https:// doi.org/  10.1016/ j.atmosenv. 2020. 117299
Boloorani, A. D., Nabavi, S. O., Bahrami, H. A., Mirzapour, F., Kavosi, M., Abasi, E., Azizi, R. 2014. Investigation of dust storms entering Western Iran using remotely sensed data and synoptic analysis. Journal of Environmental Health Science and Engineering, 12(1), 124. https://doi.org/10.1186/s40201-014-0124-4
Broomandi, P., Karaca, F., Guney, M., Fathian, A., Geng, X., Kim, J. R. 2021. Destinations frequently impacted by dust storms originating from southwest Iran. Atmospheric Research, 248, 105264. https://doi.org/10.1016/j.atmosres.2020.105264
Bullard, J. E., Harrison, S. P., Baddock, M. C., Drake, N., Gill, T. E., McTainsh, G., Sun, Y. 2011. Preferential dust sources: A geomorphological classification designed for use in global dust‐cycle models. Journal of Geophysical Research: Earth Surface, 116(F4). https:// doi.org/ 10.1029/2011JF002061
Du, H., Wang, T., Xue, X., Li, S. 2018. Modelling of sand/dust emission in Northern China from 2001 to 2014. Geoderma, 330, 162-176. https:// doi.org/ 10.1016/ j.geoderma. 2018. 05.038
Engelstaedter, S., Kohfeld, K. E., Tegen, I., Harrison, S. P. 2003. Controls of dust emissions by vegetation and topographic depressions: An evaluation using dust storm frequency data. Geophysical Research Letters, 30(6). https://doi/abs/10.1029/2002GL016471
Engelstaedter, S., Tegen, I., Washington, R. 2006. North African dust emissions and transport. Earth-Science Reviews, 79(1-2), 73-100. https://doi.org/10.1016/j.earscirev.2006.06.004
Gerivani, H., Lashkaripour, G. R., Ghafoori, M., Jalali, N. 2011. The source of dust storm in Iran: a case study based on geological information and rainfall data. Carpathian Journal of Earth and Environmental Sciences, 6, 297-308. https:// profdoc.um.ac.ir/ articles/ a/1019133.pdf
Hahnenberger, M., Nicoll, K. 2014. Geomorphic and land cover identification of dust sources in the eastern Great Basin of Utah, USA. Geomorphology, 204, 657-672. https:// doi.org/ 10.1016/ j.geomorph.2013.09.013
Hamidi, M., Kavianpour, M. R., Shao, Y. 2013. Synoptic analysis of dust storms in the Middle East. Asia-Pacific Journal of Atmospheric Sciences, 49(3), 279-286. https:// doi.org/1 0.1007/s13143-013-0027-9
Hamzeh, N. H., Kaskaoutis, D. G., Rashki, A., Mohammadpour, K. 2021. Long-Term Variability of Dust Events in Southwestern Iran and Its Relationship with the Drought. Atmosphere, 12(10), 1350. https://doi.org/10.3390/atmos12101350
Heald, C. L., Spracklen, D. V. 2015. Land use change impacts on air quality and climate. Chemical reviews, 115(10), 4476-4496. http://dx.doi.org/10.1021/cr500446g
Huang, M., Peng, G., Zhang, J., Zhang, S. 2006. Application of artificial neural networks to the prediction of dust storms in Northwest China. Global and Planetary change, 52(1-4), 216-224. https://doi.org/10.1016/j.gloplacha.2006.02.006
Kandakji, T., Gill, T. E., Lee, J. A. 2020. Identifying and characterizing dust point sources in the southwestern United States using remote sensing and GIS. Geomorphology, 353, 107019. https://doi.org/10.1016/j.geomorph.2019.107019
Klingmüller, K., Pozzer, A., Metzger, S., Stenchikov, G. L., Lelieveld, J. 2016. Aerosol optical depth trend over the Middle East. Atmospheric Chemistry and Physics, 16(8), 5063–5073. https://doi.org/10.5194/acp-16-5063-2016
Lee, J. A., Gill, T. E., Mulligan, K. R., Acosta, M. D., Perez, A. E. 2009. Land use/land cover and point sources of the 15 December 2003 dust storm in southwestern North America. Geomorphology, 105(1-2), 18-27. https://doi.org/10.1016/j.geomorph.2007.12.016
McTainsh, G., Strong, C. 2007. The role of aeolian dust in ecosystems. Geomorphology, 89(1-2), 39-54. https://doi.org/10.1016/j.geomorph.2006.07.028
Mei, D., Xiushan, L., Lin, S., Ping, W. A. N. G. 2008. A dust-storm process dynamic monitoring with multi-temporal MODIS data. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 37. https:// www. isprs. org/ proceedings/ XXXVII/ congress/7_pdf/5_WG-VII-5/39.pdf     
Miri, A., Ahmadi, H., Ekhtesasi, M. R., Panjehkeh, N., Ghanbari, A. 2009. Environmental and socio‐economic impacts of dust storms in Sistan Region, Iran. International journal of environmental studies, 66(3), 343-355. https://doi.org/10.1080/00207230902720170
Moridnejad, A., Karimi, N., Ariya, P. A. 2015. Newly desertified regions in Iraq and its surrounding areas: Significant novel sources of global dust particles. Journal of Arid Environments, 116, 1-10. https://doi.org/10.1016/j.jaridenv.2015.01.008
Moulin, C., Chiapello, I. 2006. Impact of human‐induced desertification on the intensification of Sahel dust emission and export over the last decades. Geophysical Research Letters, 33(18). https://doi/pdf/10.1029/2006GL025923
Munkhtsetseg, E., Shinoda, M., Ishizuka, M., Mikami, M., Kimura, R., Nikolich, G. 2017. Anthropogenic dust emissions due to livestock trampling in a Mongolian temperate grassland. Atmospheric Chemistry and Physics, 17(18), 11389. https://doi.org/10.5194/acp-17-11389-2017
Notaro, M., Yu, Y., Kalashnikova, O. V. 2015. Regime shift in Arabian dust activity, triggered by persistent Fertile Crescent drought. Journal of Geophysical Research: Atmospheres, 120(19), 10-229. https://doi/pdf/10.1002/2015JD023855
Parajuli, S. P., Yang, Z. L., Kocurek, G. 2014. Mapping erodibility in dust source regions based on geomorphology, meteorology, and remote sensing. Journal of Geophysical Research: Earth Surface, 119(9), 1977-1994. https://doi/pdf/10.1002/2014JF003095
Philip, S., Martin, R. V., Snider, G., Weagle, C. L., van Donkelaar, A., Brauer, M., ... & Zhang, Q. 2017. Anthropogenic fugitive, combustion and industrial dust is a significant, underrepresented fine particulate matter source in global atmospheric models. Environmental Research Letters, 12(4), 044018. https://doi.org/10.1088/1748-9326/aa65a4
Qu, J. J., Hao, X., Kafatos, M., Wang, L. 2006. Asian dust storm monitoring combining Terra and Aqua MODIS SRB measurements. IEEE Geoscience and remote sensing letters, 3(4), 484-486. https://ieeexplore.ieee.org/abstract/document/1715300
Rashki, A., Kaskaoutis, D. G., Eriksson, P. G., Rautenbach, C. D. W., Flamant, C., Vishkaee, F. A. 2014. Spatio-temporal variability of dust aerosols over the Sistan region in Iran based on satellite observations. Natural hazards, 71(1), 563-585. https://doi.org/10.1007/s11069-013-0927-0
Rashki, A., Middleton, N. J., Goudie, A. S. 2021. Dust storms in Iran–Distribution, causes, frequencies and impacts. Aeolian Research, 48, 100655. https:// doi.org/ 10.1016/ j.aeolia.2020.100655
Ravi, S., D’Odorico, P., Huxman, T. E., Collins, S. L. 2010. Interactions between soil erosion processes and fires: implications for the dynamics of fertility islands. Rangeland Ecology & Management, 63(3), 267-274. https://doi.org/10.2111/REM-D-09-00053.1
Reheis, M. C. 2006. A 16-year record of eolian dust in Southern Nevada and California, USA: Controls on dust generation and accumulation. Journal of Arid Environments, 67(3), 487-520. https://doi.org/10.1016/j.jaridenv.2006.03.006
Tan, M., Li, X., Xin, L. 2014. Intensity of dust storms in China from 1980 to 2007: A new definition. Atmospheric environment, 85, 215-222. https:// doi.org/ 10.1016/ j.atmosenv. 2013. 12.010
Tegen, I., Werner, M., Harrison, S. P., Kohfeld, K. E. 2004. Relative importance of climate and land use in determining present and future global soil dust emission. Geophysical research letters, 31(5). https://doi/pdf/10.1029/2003GL019216
Wang, X., Cai, D., Chen, S., Lou, J., Liu, F., Jiao, L., ... & Che, H. 2021. Spatio-temporal trends of dust emissions triggered by desertification in China. Catena, 200, 105160. https://doi.org/10.1016/j.catena.2021.105160
Wang, X., Cheng, H., Che, H., Sun, J., Lu, H., Qiang, M., ... & Lang, L. 2017. Modern dust aerosol availability in northwestern China. Scientific reports, 7(1), 1-8. https:// doi.org/ 10.1038/s41598-017-09458-w
Wang, X., Liu, J., Che, H., Ji, F., Liu, J. 2018. Spatial and temporal evolution of natural and anthropogenic dust events over northern China. Scientific Reports8(1), 1-9. https:// doi.org/ 10.1038/s41598-018-20382-5
Wang, X., Xia, D., Wang, T., Xue, X., Li, J. 2008. Dust sources in arid and semiarid China and southern Mongolia: Impacts of geomorphological setting and surface materials. Geomorphology, 97(3-4), 583-600. https://doi.org/10.1016/j.geomorph.2007.09.006
Wang, Y. Q., Zhang, X. Y., Arimoto, R. 2006. The contribution from distant dust sources to the atmospheric particulate matter loadings at XiAn, China during spring. Science of the Total Environment, 368(2-3), 875-883. https://doi.org/10.1016/j.scitotenv.2006.03.040
Ward, D. S., Mahowald, N. M., Kloster, S. 2014. Potential climate forcing of land use and land cover change. Atmospheric Chemistry and Physics, 14(23), 12701-12724. https:// doi.org/ 10.5194/ acp-14-12701-2014
Webb, N. P., Herrick, J. E., Duniway, M. C. 2014. Ecological site‐based assessments of wind and water erosion: informing accelerated soil erosion management in rangelands. Ecological Applications, 24(6), 1405-1420. https://jornada.nmsu.edu/bibliography/14-027.pdf
Xin-fa, Q., Yan, Z., Qi-long, M. 2001. Sand-dust storms in China: temporal-spatial distribution and tracks of source lands. Journal of Geographical Sciences, 11(3), 253-260. https:// doi.org/ 10.1007/BF02892308
Zheng, Y., Zhao, T., Che, H., Liu, Y., Han, Y., Liu, C., ... & Zhou, Y. 2016. A 20-year simulated climatology of global dust aerosol deposition. Science of The Total Environment, 557, 861-868. https://doi.org/10.1016/j.scitotenv.2016.03.086
Zhuang, G., Guo, J., Yuan, H., Zhao, C. 2001. Composition, source and grain size fraction of the dust storms in China in 2000 and its influence to the global environments. Chinese Sciences Bulletin, 46, 191-197. https://doi.org/10.1007/BF02900460