Analysis of Geopotential Altitude Trend on Iran under the Influence of Climate Change

Document Type : Research Article


1 Professor in Meteorology, Faculty of Geographical Sciences, Kharazmi University of Tehran, Tehran, Iran

2 Professor in Meteorology, Faculty of Humanities, Department of Geography, Zanjan University, Zanjan, Iran

3 Department in Geography, Faculty of Literature, Kharazmi University of Tehran, Tehran, Iran


Trend variations in large-scale atmospheric systems like subtropical high pressure play a significant role in climate change. In this study, to achieve the objectives, mid-level atmospheric geopotential altitude data were employed based on the European Center Database of Atmospheric Medium-Term Forecasting. The data that have a spatial resolution of 1*1 degree of curveand are collected on a daily average. The statistical period of the research ranges from 1980 to 2018 for Iran and included 155 cells. Mann-Kendall trend test was used to explore the geopotential altitude trend on Iran. The results showed that the atmospheric geopotential altitude on Iran in June, July, and August has an increasing (positive) trend which is at the significant level of 1.96. The decreasing trend of geopotential altitude in the eastern and southeastern regions of Iran is remrkable. Moreover, in all the investigated months, Iranian atmosphere altitude in the central, western and northwestern regions had an upward trend, which is generally influenced by the high-pressure subtropical level. These changes cause abnormalities in climatic patterns of the regions. The study also showed that continuing subtropical pressure stack on top of ever-increasing trend in the region is significant.

Graphical Abstract

Analysis of Geopotential Altitude Trend on Iran under the Influence of Climate Change


حجازی­زاده، زهرا؛ 1372. بررسی سینوپتیکی نوسانات فشار زیاد جنب حاره­. رساله دکتری جغرافیای طبیعی. دانشگاه تربیت مدرس تهران، استاد راهنما؛ هوشنگ قائمی.
زریّن، آذر؛ 1386. تحلیل پرفشار جنب حاره تابستانه بر روی ایران. رساله دکتری جغرافیای طبیعی. دانشگاه تربیت مدرس تهران، استاد راهنما؛ هوشنگ قائمی.
زرین، آذر؛ مفیدی، عباس؛­1390. آیا پرفشار جنب‌حاره‌ای تابستانه بر روی ایران زبانه­­ای از پرفشار جنب‌حاره‌ای آزور است؟ «بررسی یک نظریه»، یازدهمین کنگره انجمن جغرافیدانان ایران- 24 و 25 شهریورماه 1390-دانشگاه شهید بهشتی، صص 15-1.                                                       
عزیزی، قاسم؛ 1383. تغییر اقلیم. تهران­، نشر قومس، صص123.
عساکره، حسین؛ 1386. کاربرد رگرسیون خطی در تحلیل روند دمای تبریز. تحقیقات جغرافیایی، ­شماره پیاپی87،  صص25-39.                                    
­عساکره، حسین؛ ­1392. تحلیل روند موسم­های خشک و تر در شهر زنجان. جغرافیا و توسعه، شماره31، صص 49-48.                                    
علیجانی، بهلول و همکاران؛ 1398. رفتار سنجی اثر گرمایش جهانی بر پرفشار جنب حاره. پژوهش­های جغرافیای طبیعی، شماره 1، ­صص 50-33.                                       10.22059/jphgr.2019.258677.1007223­
علیجانی، بهلول؛ 1378. بررسی سینوپتیکی سطح 500 هکتوپاسکال خاورمیانه در دوره 1990-1961، مجله نیوار،  شماره 45-44­، صص29-7.          
علیجانی، بهلول­؛ 1384. آب‌وهوای ایران. انتشارات پیام نور، ­صص­230.
قائمی­، هوشنگ­ و همکاران؛ 1388. تحلیل الگوی فضایی پرفشار جنب حاره بر روی آسیا و آفریقا­. فصلنامه مدرس علوم انسانی، شماره­1، صص 224-223. 
کاشکی، عبدالرضا؛ 1396. واکاوی روند تاوۀ قطبی در نیمکرۀ شمالی تحت شرایط تغییر اقلیم. جغرافیا و مخاطرات محیطی، شماره 23، صص 197-181.                                                 10.22067/GEO.V6I3.62149
مفیدی، عباس­ و همکاران؛ 1389. گردش جو تابستانه در وردسپهر فوقانی بر روی جنوبغرب آسیا و وردایی زمانی آن در طی نیم‌قرن گذشته. ارزیابی علمی و شناخت تغییر اقلیم. چهارمین کنفرانس منطقه‌ای تغییر اقلیم، تهران، 29 آذر الی 1 دی‌ماه 1389، صص12                                                   
Agee, E. M., ­1991. Trends in cyclone and Anticyclone Frequency and Comparison with Periods of Warming and Cooling over the Northern Hemisphere. Journal of Climate, 4,263-2267.<0263:TICAAF>2.0.CO;2
 Barry, R. G., Carlton, M., 2001.Synoptic and Dynamic Climatology, Shubhi Publications London, London.
Bell, G.­ D., and Boast, L. F., 1989. A 15-year climatology of northern hemisphere 500 mb closed cyclone and anticyclone centers. Mon. Wea. Rev., 117, pp. 10-198.  10.1175/1520-0493(1989)117<2142:AYCONH>2.0.CO;2
 Cherchi, A., Ambrizzi, T., Behera, S., Carolina, A., Morioka, Y,. and Zhou, T.,.2018. The Response of Subtropical Highs to Climate Change. 10.1007/s40641-018-0114-1. Corpus ID:134011562.
Davis, R. E., Hayden, P., ­Gay, A., Phillips, L., and ­Jones­, V., ­1997­. The North Atlantic Subtropical Anticyclon.Journal of Climate­, Vol. 10 ­, pp. 278-744. 10.1175/1520-0442(1997)010<0728:TNASA>2.0.CO;2
Galarneau, ­T., Bogart, F., and Aiyyer, R., 2006. Closed Anticyclones of Subtropical and Midlatitudes” A 54-y Climatology (1950-2003) and three case Studies” ­, Submitted to J. Climate, NO.55, pp.349-392. 10.1007/978-0-933876-68-2_16.
Harris, M. F. G., 1962. Finger and steels. Diurnal variation of wind, pressure and temperature in the troposphere and stratosphere over the Azores", Journal of the Atmospheric Sciences, volume 19:136-149. <0136:DVOWPA> 2.0.CO;2
Hoskins, B., 1996. on the existence and strength of the summer subtropical anticyclones: Bernhard Hurwitz memorial lecture. Bulletin ­of the American ­Meteorological Society, 77, 1287-1292.
Lee, S. K., Enfield, D. B., and Wang, C., 2011. Future impact of differential Interbasin Ocean warming on Atlantic hurry-canes. J. Climate, 24, 1264–1275. 2010JCLI3883.1
Liu, Y. M, Wu, G. X., Liu, H., and Liu, P., 2001. Condensation heating of Asian summer monsoon and the subtropical anticyclone in the Eastern Hemisphere. Climate Dynamics, 17,327-338.
Liu, Y., and Wu, X, 2004, Progress in the study on the formation of  the Summertime Subtropical Anticyclone, Advances in Atmospheric Sciences 21,pp. 320-343. 10.1007/BF02915562
Lu, R., and Dong, B., 2001. Westward extension of North Pacific subtropical high in summer. Journal of the Meteorological Society of Japan, 79, 1229-1241. jmsj.79.1229
Natalie, A. F., J. B., Erik, T. S., and David, M. S., 2021. The Influence of South Pacific Convergence Zone Heating on the South Pacific Subtropical Anticyclone. Journal of Climate, Volume 34, Issue 10, p.3787-3798. 10.1175/JCLI-D-20-0509.1
Raible, C.C., Stocker, T.F., Yoshimori, M., Renold, M., Beyerle, U., Casty C. L. J., 2005. Northern Hemispheric Trends of Pressure Indices and Atmospheric Circulation Patterns in Observations, Reconstructions, and Coupled GCM Simulations. Journal of Climate, Vol. 19, No.18, PP. 3968˚ 3982.
Santos, J. A., Corte-Real, J., and Leite, M., 2005. Weather Regimes and Their Connection to the Winter Rainfall in Portugal, International Journal of Climatology, Vol.25, pp. 33-50.
Tivig, M., Verena, G., Viju. O. J., and Stefan, A. B., 2020. Trends in Upper-Tropospheric Humidity: Expansion of the Subtropical Dry Zones?  Journal of Climate, 33 (6). pp. 2149-2161.
Wu, B., Zhou, T., and Liu, T., 2017. Responses of the summertime Subtropical Anticyclones to Global Warming, Climate Dyn., 49, 6465-6479.  
Wu, G. X., Liu, Y., and Liu, P,. 2004. Formation of the Summertime Subtropical Anticyclone. East Asian Monsoon (World Scientific Series on Meteorology of East Asia), Chang, C. P., Ed., World Scientific Publishing Company, 560. 97898127 01411_0014