Quantification of Urban Seismic Resilience Index (a Case Study of Districts 1 and 3 of Zanjan city)

Document Type : Research Article


1 MSc in Structural Engineering, Roozbeh Institute of Higher Education, Zanjan, Iran

2 Assistant professor, Department of Civil Engineering, Faculty of Engineering, University of Zanjan, Zanjan, Iran

3 MSc in Structural Engineering, Semnan University, Semnan, Iran


Resilience is a new approach and is defined to promote creating a resilient society against natural hazards. Building cities resiliently against these hazards is crucial in order to reduce vulnerability and for proper risk management during the occurrence of accidents. Todays, one of the most important hazards, threatening many cities is the occurrence of coming earthquakes. Therefore, by administrating the concept of resilience in cities, the effects of destructive earthquakes can be alleviated and help cities to return to the pre-event conditions. In this paper, in order to learn more about the concept of urban resilience and its quantification method, districts 1 and 3 of Zanjan city are selected as the case study, and are compared with each other in terms of resilience parameter. The model used in this study is based on the resilience indicators that the weight of them was obtained by analytical hierarchy system and spreading the questionnaire among experts and then, performing statistical analysis on the data derived from these questionnaires. Finally, the final rate of urban resilience against earthquake in these areas was calculated using the current relationships in the literature. The results show that the final rate of resilience in districts 1 is 0.432, while it is 0.392 for region 3. Thus, by quantifying resilience, this issue will be understandable to officials, individuals, and engineers who are involved in these areas and help them to look for solutions to enhance the urban resilience against earthquakes.

Graphical Abstract

Quantification of Urban Seismic Resilience Index  (a Case Study of Districts 1 and 3 of Zanjan city)


اتراچالی، محمد؛ غفوری آشتیانی، محسن؛ امینی حسینی، کامبد؛ 1396. ویژگی‌های شهر تاب آور در برابر زلزله و روش‌های ارزیابی آن‌ها (مطالعه موردی: بخش‌هایی از مناطق 2 و 19 شهرداری تهران) دولتی – پایان نامه کارشناسی ارشد - پژوهشگاه بین‌المللی زلزله‌شناسی و مهندسی زلزله.
اسکندری، محمدامین؛ شیعه، اسماعیل؛ حبیبی، کیومرث؛ ماکس، ویس؛1393. مدل ارزیابی تاب‌آوری مراکز درمانی در برابر زلزله. پنجمین کنفرانس بین‌المللی مدیریت جامع بحران‌های طبیعی (INDM-2014)، ص 1117.
رضایی، محمدرضا؛ 1392. ارزیابی تاب‌آوری اقتصادی و نهادی جوامع شهری در برابر سوانح طبیعی. مطالعه موردی: زلزلۀ محله‌های شهر تهران. فصلنامه مدیریت بحران. شماره 3. 38-27.
سایت شهرداری زنجان https://www.zanjan.ir/
سلمانی مقدم، محمد؛ امیر احمدی، ابوالقاسم؛ کاویان، فرزانه؛ 1393. کاربرد برنامه‌ریزی کاربری اراضی درافزایش تاب‌آوری شهری در برابر زمین‌لرزه با استفاده از سیستم اطلاعات جغرافیایی GIS (مطالعه‌ موردی: شهر سبزوار). پژوهش‌های مطالعات جغرافیایی مناطق خشک، سال پنجم. شماره 17.
عبدی، پرویز؛ 1386. بررسی فعالیت‌های لرزه‌ای استان زنجان. مجموعه مقالات پنجمین کنفرانس بین‌المللی زلزله‌شناسی و مهندسی زلزله، انتشارات مؤسسه بین‌المللی زلزله‌شناسی و مهندسی زلزله. 
غفاری، عطا؛ پاشازاده، اصغر؛ آقایی، واحد؛ 1396. سنجش و اولویت‌بندی تاب‌آوری شهری در مقابل زلزله (نمونه موردی شهر اردبیل و مناطق چهارگانه آن). مجله جغرافیا و مخاطرات محیطی، شماره 21. 65-45.
 فلاحی، علیرضا؛ جلالی، تارا؛ 1392. بازسازی تاب آور از دیدگاه طراحی شهری، پس از زلزله 1382 بم. نشریه هنرهای زیبا-معماری و شهرسازی. شماره 3. 16-5.
قنبری، ابوالفضل؛ سالکی ملکی، محمدعلی؛ قاسمی، معصومه؛ 1395. ارزیابی میزان آسیب‌پذیری شبکه معابر شهری در برابر زمین‌لرزه (نمونه موردی: شهرک باغمیشه تبریز). مجله جغرافیا و مخاطرات محیطی. شماره 18. 15-1.
Aven. T., 2017. How some types of risk assessments can support resilience analysis and management, Reliability Engineering and System Safety 167: 536–543.
Bruneau, M., Chang, S. E., Eguchi, R. T., Lee, G. C., O’Rourke, T. D., Reinhorn, A. M., Shinozuka, M., Tierney, K., Wallace, W. A., Winterfeldt, D. 2003. A framework to quantitatively assess and enhance the seismic resilience of communities, Earthquake Spectra 19:733–752
Bush, J., Doyon, A., 2019. Building urban resilience with nature-based solutions: How can urban planning contribute?  95: 102483, ISSN 0264-2751.
Eghbali, M., Samadian, D., Ghafory-Ashtiany, M., Raissi Dehkordi, M., 2020. Recovery and reconstruction of schools after M 7.3 Ezgeleh-Sarpole-Zahab earthquake; part II: Recovery process and resiliency calculation. Soil Dyn. Earthq. Eng., 139, 106327.
Kasperson, R.E., Renn, O., Slovic, P., Brown, H.S., Emel, J., Gobel, R., Kasperson, J.X., Ratick, S., 1988. The social amplification of risk: A conceptual framework.
Kwok, A. H., Doyle, E. E. H., Becker, J., Johnston, D., Paton, D., 2016. What is ‘social resilience’? Perspectives of disaster researchers, emergency management practitioners, and policymakers in New Zealand, International Journal of Disaster Risk Reduction, 19:197-211.
Lucini, B., 2013. Social capital and sociological resilience in megacities context, International Journal of Disaster Resilience in the Built Environment, 58-71.
MacAskilla, K., Guthriea, P. 2014., Multiple interpretations of resilience in disaster risk    management.Procedia Economics and Finance, 18:667 – 674.
Maria, K., Van de Lindt, J.W., McAllister, T.P., Ellingwood, B.R., Dillard, M., Cutler, H., 2018. State of the research in community resilience: progress and challenges, Sustainable and Resilient Infrastructure.
Mayunga, J. S., 2007. Understanding and applying the concept of community disaster resilience: A capital based approach. 22 - 28 July, Munich, Germany, 1-16
Motlagh, Z. S., Raissi Dehkordi, M., Eghbali, M., Samadian, D., 2020. Evaluation of seismic resilience index for typical RC school buildings considering carbonate corrosion effects. International Journal of Disaster Risk Reduction, 46: 101511.
Proaga, V., 2014. The concept of vulnerability and resilience. 4th International Conference on Building Resilience. 369– 376.
Ribeiro, P.J. G., Pena Jardim Gonçalves, L.A., 2019. Urban resilience: A conceptual framework.  Sustainable Cities and Society, 50, ISSN 2210-6707.
Samadian, D., Eghbali, M., Raissi Dehkordi, M., Ghafory-Ashtiany, M., 2020. Recovery and reconstruction of schools after M 7.3 Ezgeleh-Sarpole-Zahab earthquake of Nov. 2017; part I: Structural and nonstructural damages after the earthquake. Soil Dynamic and Earthquake Engineering, 139: 106305.
Samadian, D., Ghafory-Ashtiany, M., Naderpour, H., Eghbali, M., 2016. Evaluation of resilience index using fragility curves. Proc., 7th international conference on integrated disaster risk management, Isfahan Iran, 京都大学防災研究所年報. A= Disaster Prevention Research Institute Annuals. A, 60 (A): 250-267.
Samadian, D., Ghafory-Ashtiany, M., Naderpour, H., Eghbali, M., 2019. Seismic resilience evaluation based on vulnerability curves for existing and retrofitted typical RC school buildings. Soil Dynamic and Earthquake Engineering, 127: 105844.
Sardari, F., Raissi Dehkordi, M., Eghbali, M., Samadian, D., 2020. Practical seismic retrofit strategy based on reliability and resiliency analysis for typical existing steel school buildings in Iran. International Journal of Disaster Risk Reduction, 51:101890.
Weichselgartner, J., Kelman, L., 2014. Geographies of resilience: Challenges and opportunities of a descriptive concept. Progress in Human Geography, 39(3):1-19