Investigating the effect of heat waves On Thermal Islands In Tabriz metropolis

Document Type : Research Article


1 Ph.D. Student of Natural Geography, Climatology, Faculty of Social Sciences, University of Mohaghegh Ardabili, Ardabil, Iran

2 Professor, Department of Natural Geography, Climatology, Faculty of Social Sciences, University of Mohaghegh Ardabili, Ardabil, Iran

3 Ph.D. of Climatology, Faculty of Natural Resources, University of Kurdistan, Sanandaj, Iran.


Heat waves are one of the most important climatic disasters. The purpose of this study was investigation the effect of heat waves on the heat islands of Tabriz metropolis from 2003 to 2018. For this purpose, maximum temperature data of Tabriz Synoptic Station were obtained from the Meteorological Organization and days with heat waves were determined with the help of the normalized temperature Fumiaki index and through programming in MATLAB software. To investigate the effect of heat waves on the intensification of thermal islands, heat waves in the hot and cold months of the year are selected and thermal islands for those days and a day without heat waves with the minimum temperature before each heat wave during the day and night with the help the Land surface temperature data of the Modis- Aqua sensor were calculated. According to the results, during the study period, the maximum duration of heat waves was 4 days and therefore short-term. The highest annual and monthly frequency of heat waves were in 2010 and in April, June and December, respectively, and the trend of heat waves in the study period had a slight non-significant decrease. According to the results, in both hot and cold months, often in both heat waves and no heat wave conditions, a cold island on day and a hat island at night, is formed in the city center, which occurs with the occurrence of heat waves. Compared to normal days, the intensity of the daily cold island and the night heat island has increased, which was more noticeable in the warm months than in the cold months. Also, according to the findings, the persistence of heat waves has not played a significant role in intensifying the thermal islands.


  1. اسمعیل نژاد، مرتضی؛ خسروی، محمود؛ علیجانی، بهلول؛ مسعودیان، سید ابوالفضل؛ 1392. شناسایی امواج گرمایی ایران. جغرافیا و توسعه. شماره 3. صص 54 – 39.

    رحیمی، داریوش؛ میر هاشمی، حمید؛ علیزاده، تیمور؛ 1396. تحلیل ساختار امواج گرمایی در غرب و شمال غرب ایران. جغرافیا و برنامه‌ریزی محیطی. شماره 3. صص 80- 69.

    سازمان هواشناسی کشور .

    صلاحی، برومند؛ قدرتی، زینب؛ 1397. پیش­بینی و تحلیل امواج گرمایی شهر زنجان با استفاده از ریزگردانLARS-WG و شاخص بالدی. فصلنامه جغرافیای طبیعی، شماره 40. صص 48-35.

    عزیزی، قاسم؛ 1383. تغییر اقلیم. تهران: نشر قومس. چاپ اول. ص 434.

    قاسمی فر، الهام؛ ناصرپور، سمیه؛ 1396. تحلیل سینوپتیکی امواج گرما و سرما در سواحل جنوبی دریای خزر. فصلنامه علمی - پژوهشی اطلاعات جغرافیایی (سپهر). شماره 103. صص 146-137.

    کاشکی، عبدالرضا؛ کرمی، مختار؛ با عقیده، محمد؛ علیمرادی، محمدرضا؛ 1398. واکاوی آماری امواج گرمایی زابل، دگرگونی­ها و مخاطرات آب و هوایی. شماره 1. صص 55-40.

    مجرد، فیروز؛ معصوم­پور، جعفر؛ رستمی، طیبه؛ 1397. بررسی تغییرات دورهای و فصلی جزیرۀ گرمایی شهر کرمانشاه در شب و روز با استفاده از تصاویر ماهوارهای.  فیزیک زمین و فضا. شماره 2. صص 494 -479.

    مولودی، گلاله؛ خورانی، اسدالله؛ مرادی، عباس؛ 1394. اثر تغییر اقلیم بر امواج گرمایی سواحل شمالی خلیج‌فارس. نشریه تحلیل فضایی مخاطرات محیطی. شماره 1. صص 14 -1.

    هوشیار، محمود؛ سبحانی، بهروز؛ حسینی، سید اسعد؛ 1397. چشم انداز ‌تغییرات ‌دماهای ‌حداکثر ‌ارومیه با ‌استفاده ‌از ‌‌ریزگردانی‌ آماری خروجی‌ مدل‌‌ CanESM2، نشریه علمی- پژوهشی جغرافیا و برنامه ریزی. شماره 63، 325-305.


    1. Añel J, Fernández-González M, Labandeira X, López-Otero X, de la Torre L., 2017. Impact of Cold Waves and Heat Waves on the Energy Production Sector. Atmosphere 10: 1-13.

    Almusaed A., 2011. The Urban Heat Island Phenomenon upon Urban Components. Biophilic and Bioclimatic Architecture 21: 139-150.

    Bai L, Gangqiang D, Shaohua G, Peng B, Buda S, Dahe Q, Ramamurthy P, Bou‐Zeid E., 2017. Heatwaves and urban heat islands: A comparative analysis of multiple cities. Journal of geophysical research Atomospheres an AGU JOURNAL 122: 168-178.

    Basara J, Basara H, Bradley I, Kenneth C., 2018. The Impact of the Urban Heat Island during an Intense Heat Wave in Oklahoma City. Advances in Meteorology 7: 1-10.

    De Ridder K, Maiheu B, Lauwaet D, Daglis I A, Keramitsoglou I, Kourtidis K, Manunta P, Paganini M. 2016. Urban Heat Island Intensification during Hot Spells-The Case of Paris during the Summer of 2003. Urbanscience 1: 1-11.

    Dobrovolny P, Krahula L., 2015. The spatial variability of air temperature and nocturnal urban heat island intensity in the city of Brno, Czech Republic, Moravian Geographical Reports 23: 8-16.

    Feng C, Xuchao Y, Weiping Z., 2014. WRF simulations of urban heat island under hot-weather synoptic conditions: The case study of Hangzhou City, China. Atmospheric Research 138: 364–377.

    Feron- Sarah R, Cordero R, Alessdro- Damiani P, Llanillo J, Jorquera J, sepulveda E, Asencio V, Laroze D,  Labbe F, Carrasco J, torres G., 2019. observations and projections of Heat Waves in south Americas. Scientific reportst 9: 1-15.

    Founda D, Santamouris M., 2017. Synergies between Urban Heat Island and Heat Waves in Athens (Greece), during an extremely hot summer (2012), Scientific Reports 7: 1-16.

    Fujibe F, Yamazaki N, Kobayashi K, Nakamigawa H. 2007. long-term changes of
    temperature extremes and day-to-day variability in Japan, papers in Meterology and Geophysics, IPCC 85: 63-70.

    Ghobadi A, Khosravi M, Tavousi T., 2017. Surveying of Heat waves Impact on the Urban Heat Islands: Case study, the Karaj City in Iran. Urban Climate 10: 1-16.

    Hosseini A.,  2016. Assessment of Urban Heat Island based on the relationship between land surface temperature and Land Use/Land Cover in Tehran, Sustainable Cities and Society 23: 94-104.

    Khandelwal S, Goyal R, Kaul N, Mathew A., 2017. Assessment of land surface temperature variation due to change in elevation of area surrounding Jaipur, India. The Egyptian Journal of Remote Sensing and Space Science 21): 1-8.

    Lazzarini M, Marpu PR, Ghedira H., 2013. Temperature-land cover interactions: the inversion of urban heat island phenomenon in desert city areas. Remote Sensing of Environment 130: 136-152.

    Lemonsu A, Viguié V, Daniel M, Masson V., 2015. Vulnerability to heat waves: Impact of urban expansion scenarios on urban heat island and heat stress in Paris (France). Urban Climate 14: 586–605.

    Paravantis J, Santamouris M, Constantinos C, Efthymiou C, Kontoulis N., 2017 Mortality Associated with High Ambient Temperatures Heatwaves, and the Urban Heat Island in Athens, Greece, Sustainability 606: 2-22.

    Ramamurthy P, Bou‐Zeid E., 2017. Heatwaves and urban heat islands: A comparative analysis of multiple cities. Journal of Geophysical Research: Atmospheres 1: 168-178.

    Rohini, P.; Pajeevan, m., and Mukhopahay, P., 2019. Future projections of heat waves over India from CMIP5 models, Climate Dynamics, (53), 975–988.

    Solomon S, Qin D, Manning Ch, Marquis M, Muhire M, K.B. I, Ahmed F. 2016. Spatiotemporal trends in mean temperatures and aridityindex over Rwanda. Theoretical and Applied Climatology 123: 399-414.

    Weihe Z, Shuang Ji, Tsun-Hsuan Ch, Hou Y, Zhang K., 2014. The 2011 heat wave in Greater Houston: Effects of land use on temperature. Environmental Research 135: 81–87.

    Wilks D.S. 2006. Statistical Methods in the Atmospheric Sciences, Second Edition, Academic Press is an imprint of Elsevier, Cornell University, USA 648.

    Zhou B, Lauwaet D, Hooyberghs H, De Ridder, Kropp K, D- Rybski J., 2016. Assessing Seasonality in the Surface Urban Heat Island of London, Journal Of Applied Meteorology and Climatology 55: 493-505.