Zoning and morphological analysis of floods of Dinevar river (Kermanshah province) with using HEC-RAS hydrodynamic model

Document Type : Research Article

Authors

1 aDepartment of Physical Geography, Shahid Beheshti University, Tehran, Iran

2 Department of Physical Geography, Faculty of Earth Sciences, Shahid Beheshti University, Tehran, Iran.

Abstract

Floods are the most common natural hazards, the recurrence of which is increasing and the associated risks in urban and rural areas are of global importance, although their importance is not well understood for developing countries. The aim of this study was to zoning the flood risk of Dinevar River in Kermanshah province. Therefore, the HEC_RAS numerical model was used to simulate the flood and was used through the HEC-GEORAS. Using SMADA software, the peak flow rate was calculated and the flood zone with different return periods of 2 years, 10 years, 25, 50, 100 and 200 years is simulated area and with the help of digital depth model Water and land use layer, the amount of damage was calculated using the equation of depth function and damage in the return period of 25 years, 50 and 100 years. The results of this study show that the area of flood expansion zone in the return period of 25 years is 40.34 square kilometers, in the return period of 50 years is 43.51 and in the return period of 100 years, 44.28 square kilometers is endangered in terms of damage. 25 years is considered a baseline flood that shows significant damage, covering all farms, but floods affect parts of farms at lower returns. But it is controllable, while 25-, 50-, and 100-year-old floods have completely endangered many rural centers and farms. 50 years has been an average of 85% more, which requires flood control for sustainable management.

Keywords


پناهی، رؤیا؛ حسین­زاده، محمدمهدی؛ خالقی، سمیه؛ 1398. پهنه­بندی مخاطره سیلاب در راستای تعیین حریم رودخانه­ها (مطالعه موردی: رودخانه­ گاماسیاب). مجله­ اکو هیدرولوژی. دوره 6. شماره 2. صص 553 – 567.
حجازی، اسدالله؛ خدایی قشلاق، فاطمه؛ خدایی قشلاق، لیلا؛ 1398. پهنه‌بندی خطر وقوع سیلاب در حوضه آبریز ورکش با استفاده از مدل HEC -RAS و الحاقیه HEC- GEO-RAS. نشریهتحقیقاتکاربردیعلومجغرافیایی. سال نوزدهم. شماره 3. صص 137 -155.
رضایی­مقدم، محمدحسین؛ یاسی، مهدی؛ نیکجو، محمدرضا؛ رحیمی، مسعود؛ 1397؛ پهنه­بندی و تحلیل مورفولوژیکی سیلاب رودخانه با استفاده از (HEC-RAS)(از روستای پیرازمیان تا تلاقی رودخانه اهر چای). جغرافیا و مخاطرات محیطی. دوره هفتم. شماره 25. صص 1-15.
روستایی، شهرام؛ ایاسه، فریبا؛ رضایی مقدم، محمدحسین؛ 1399. شبیه‌سازی دو بعدی سیلاب رودخانه لیقوان با تأکید بر دشت سیلابی. پژوهش­های ژئومورفولوژی کمی. سال نهم. شماره 1. صص 41 -28.
شفیعی، خسرو؛ عبادتی، ناصر؛ 1399. پهنه­بندی سیلاب و شبیه­سازی رفتار هیدرولیک رودخانه با استفاده از نرم‌افزار HEC-RAS (مطالعه موردی رودخانه مارون – جنوب غرب ایران). مجله اکوهیدرولوژی. دوره 7. شماره 2. صص 397 – 409.
گنجی نوروزی، زهرا؛ شکوهی، علیرضا؛ پی سینگ، ویجی؛ 1395. محاسبه عدم قطعیت تابع دبی احتمال در برآورد ریسک خسارت کشاورزی ناشی از سیل با استفاده از روش مونت‌کارلو. تحقیقات منابع آب  ایران. سال دوازدهم. شماره 2. صص 13 – 23.
مختاری، فهیمه؛ سلطانی، سعید؛ موسوی، سید علیرضا؛ 1396. شناسایی مناطق در معرض سیل و ارزیابی خسارات ناشی از آن با استفاده از مدل  HEC-FIA، (مطالعه موردی حوضه آبخیز قمصر). مجله پژوهش­های آب ایران. شماره 27. صص 84 -73.
معاونت امور آب و آبفا، دفتر استانداردها و طرح­های آب و آبفا؛ 1395. بررسی خسارت سیلاب نشریه شماره 164 نون وزارت نیرو. انتشارات وزارت نیرو.
مهرورز، ارسلان؛ مددی، عقیل؛ اسفندیاری درآباد، فریبا؛ رحیمی، مسعود؛ 1399. شبیه‌سازی سیلاب­های رودخانه دره آئورت با استفاده از مدل هیدرولیکی  HEC-RAS در محیط  GIS (محدوده موردمطالعه: از روستای شورستان تا تلاقی رودخانه ارس). پژوهش­های ژئوموفولوژی کمی. سال هشتم. شماره 4. صص  146 -131.      
 
Anees, M.T., Abdullah, K., Nawawi, M. N. M., Rahman, N. N. A., Piah, A. R. M., Zakaria, N., Syakir, M.I and Omar, A. K .,  2016. Numerical modeling techniques for flood analysis, Journal of African Earth Sciences 124: 478-486.
Bélanger, B., Biron,T.h., Pascale, M., Larocque, M., Sylvio, D.,Taylor, O., Guénolé, C.h., Cloutier, M.A., Desjarlais, C.A., 2015. Freedom space for rivers: An economically viable river management concept in a changing climate. Geomorphology 251:  137–148.
Brunner, G. W., 2001. HEC-RAS River Analysis System: User's Manual. US Army Corps of Engineers, Institute for Water Resources, Hydrologic Engineering Center.
COON, W. F., 1996. Estimates of Roughness Coefficients for Selected Natural Stream Channels with Vegetated Banks in New York. U.S. DEPARTMENT OF THE INTERIOR BRUCE BABBITT, Secretary.
Dutta, D., Teng, J., Vaze, J., Lerat, J., and Marvanek, S., .2013. Storage-based approaches to build floodplain inundation modelling capability in river system models for water resources planning and accounting. Journal of Hydrology 504 (11): 12-28.
Geravand, F., Mossa Hosseinia, S., and Ataie-Ashtiani, B., 2020. Influence of river cross-section data resolution on flood inundation modeling: Case study of Kashkan river basin in western Iran. Journal of Hydrology 584: 124743
Hadad, A., Remini, B., Remaoun, M., 2014. Numerical modelling of solid transport caused by an extreme flood: case of the Hamiz dam failure (Algeria). Journal of King Saud University - Engineering Sciences 29(3): 221-236.
Hopkins, M. C., and Dawers, N. H., 2015. Changes in bedrock channel morphology driven by displacement rate increase during normal fault interaction and linkage. Basin Research 27 (1): 43-59.
Khalfallah, C. B., Saidi, S., 2018. Spatiotemporal floodplain mapping and prediction using HEC-RAS - GIS tools: Case of the Mejerda river, Tunisia. Journal of African Earth Sciences. 142: 44-51.
Nkwunonwo, U. C., Malcolm, W., and Brian, B., 2015. Flooding and flood risk reduction in Nigeria: cardinal gaps, Journal of Geography and Natural Disasters 5(5): 136-145
Parhi,P.K., 2018. Flood Management in Mahanadi Basin using HEC-RASand Gumbel’s Extreme Value Distribution. Journal of The Institution of Engineers (India): Series A 99(4): 751–755.
Quiroga, m., kure, s., and mano, a,. 2016. Application of 2D numerical simulation for the analysis of the February 2014 Bolivian Amazonia flood: Application of the new HEC-RAS version 5. RIBAGUA – Revista Iberoamericana del Agua 3(1): 25–33
Rahmani, R. A., Mohammadi, M., and Danandeh Mehr, A., 2020. Climate change impacts on floodway and floodway fringe: a case study in Shahrchay River Basin, Iran. Arabian Journal of Geosciences 494: 1-13.
Samela, C., Troy, T., and Manfreda, S., 2017.  Geomorphic classifiers for flood-prone areas delineation for data-scarce environments.  . Journal of the Advances in Water Resources 102 : 13–28.
Sanchez, F. J., and Roman, S., 2007. Manual Introductorio a HEC-RAS. Departamento de Geología, Universidad, Salamanca, Espa~na. (Accessed 12 December 2017).
Shelley, J., Gibson, S., and Williams, A., 2015. Unsteady flow and sediment modeling in a large reservoir using HEC-RAS 5.0. In: Federal Interagency Sediment Conference.
Shokri, A., Sabzevari, S., and Hashemi, S. A., 2020. Impacts of flood on health of Iranian population: Infectious diseases with an emphasis on parasitic infections. Parasite Epidemiology and Control 9: e00144.
Yerramilli, S. A., 2012. Hybrid Approach of Integrating HEC-RAS and GIS Towards the Identification and Assessment of Flood Risk Vulnerability in the City of Jackson, MS. American Journal of Geographic Information System 1(1): 7-16.
Zelenakova, M., Fijko, R., Labant, S., Weiss, E., Markovic, G., and Weiss, R., 2019. Flood risk modelling of the Slatvinec stream in Kru _ zlov village, Slovakia. Journal of Cleaner Production.Journal of Cleaner Production 212:109-118.
 
CAPTCHA Image