A Comparison of Fuzzy Analytic Hierarchy Process, Artificial Neural Network and Area Density in Quantitative Evaluation and Landslide Susceptibility Mapping within GIS Framework (Case Study: Simereh Homiyan Watershed(

Document Type : مقاله پژوهشی


1 University of Tehran

2 Birjand University



Landslide is one of the major geomorphologic processes affecting the landscape's evolution in mountainous areas, which can lead to the catastrophic events (Hattanji & Moriwaki, 2009). Landslide Hazard Zonation (LHZ) is defined as dividing land into several regions and the classification of these areas, based on the actual or probable degree of susceptibility to landslides or other displacements of slopes (Varnes, 1984).
For this purpose, the use of new technologies such as Geographic Information System  and computational intelligence algorithms can be useful in preparing accurate maps of landslide zonation. In this study, three methods including Fuzzy Analytic Hierarchy Process (FAHP), Artificial Neural Network (ANN) and Area Density were employed as the representatives of two groups of decision making frameworks, i.e. non-deterministic computational and statistical methods in quantitative assessment. The efficiency of these approaches were examined, as well. This study was conducted in a part of Simereh Homiyan watershed with a large number of registered landslides to present an appropriate model for determining a geologic based efficient approach in landslide zonation. .

Materials and Methods

2.1. Study Area
The study area is located in the west of Lorestan province with a geographical longitude of 47˚  22' to 47˚ 52' and a geographical latitude of 33˚ 34' to 34˚ 9'. The study region with an area of ​​128,000 hectares has an average altitude of 1620 meters above sea level (Baharand and Surri, 2015).
2.1.1. Information Layers
In order to determine the effective criteria for landslide susceptibility mapping, we should use the factors that are able to solve the problem, and take into account the local and general situation of the region and existing constraints. The information layers used in this study, based on a consultation with watershed managers and geology experts were topographic layers, vegetation, relative humidity, depth of soil fracture, proximity to river, fault and road, and geological sensitivity layer.
2.1.2. Layer standardization
Measurement of criteria in the form of information layers takes place with a wide range of scales. Therefore, the values ​​in the various layers must be converted into the units that are comparable and proportionate.


In order to evaluate the accuracy of the results, the data of the landslides recorded in the study area were used based on simple random sampling in the areas with mass movements. Generally, 50% of the landslide records were used to train the employed techniques and the remaining were utilized in validation analysis.

Results and Discussion

Due to the number of layers provided for this study, the corresponding calculations were performed for each method. In sum, according to the type of training and experimental data used, the accuracy of the three methods used can be considered convincing; however, at the same time, the validity of the ANN and area density is significantly better than that of the FAHP. It could be due to the poor performance of the FAHP in pair comparisons. In other words, the opinions of the experts that should be involved in, impose some uncertainties in FAHP process. The highest accuracy for the ANN can be resulted from the proper functioning of this approach, which has been able to produce appropriate outputs by using appropriate training data and finding the internal relations of the target values ​​and inputs.


Based on the results, the northern regions of the study area are prone to occurrence of landslide. On the other hand, the values of the verification parameters confirm the higher accuracy of the results of both neural network and surface area densities, respectively, with the overall accuracy of 0.73 and 0.71. Based on the comparison of the results, the FAHP method with a total accuracy of 0.58 shows better performance. In general, the neural network method based on the validation statistics used include general accuracy, user authenticity and manufacturer's accuracy which are respectively with values of 0.73, 0.8, and 0.59 and have the highest accuracy.


ایزدی، ز؛ انتظاری، م؛ 1392. زمین‌لغزش‌های ایران، معرفی، عوامل و مدیریت. رشد آموزش جغرافیا. شماره4 صص37-32
آهنی، ع؛ امامقلی زاده، ص؛ موسوی ندوشنی، س. س؛ اژدری، خ؛ 1395. منطقه بندی حوزه‌های آبخیز با بکارگیری نوعی از شبکه‌های عصبی مصنوعی به منظور تحلیل فراوانی منطقه‌ای سیلاب. پژوهشنامه مدیریت حوزه آبخیز. شماره (14)7. صص 118_106
بختیاری، م.، ع. صابری. و ک. رنگزن؛ 1390. پهنه بندی خطر زمین لغزش در منطقه شیرین بهار خوزستان با استفاده از GIS به روش آنالیز حساسیت. اولین همایش ملی علمی دانشجویی انجمن علمی زمین شناسی.
بهاروند.، س؛ سوری، س؛ 1394. پهنه‌بندی خطر زمین‌لغزش با استفاده از روش شبکه عصبی مصنوعی (مطالعه موردی: حوزه سپیددشت، لرستان). فصلنامه سنجش‌ازدور و سامانه اطلاعات جغرافیایی در منابع طبیعی. شماره 6(4). صص 31-15.
بهشتی راد، م؛ فیض نیا، س؛ سلاجقه، ع؛ احمدی، ح؛ 1388. بررسی کارایی مدل پهنه بندی خطر زمین لغزش فاکتور اطمینان (CF) مطالعه موردی حوضه آبخیز معلم کلایه. فصلنامه جغرافیای طبیعی. 2(5): 28-19.
جوادی، م. ر؛ طهرانی پور، ه؛ غلامی، ش.ع؛ فتاحی اردکانی، م. ع؛ 1391. مقایسه روش‌های مورا و وارسون و رگرسیون چندمتغیره در پهنه‌بندی خطر زمین‌لغزش حوضه آبخیز کن. پژوهشنامه مدیریت حوضه آبخیز. شماره 3(5).
حسن‌زاده، محمد؛ 1379. پهنه‌بندی خطر زمین‌لغزش در حوزه آبخیز شلمانرود. پایان‌نامه کارشناسی ارشد. دانشگاه تهران.
رنگزن، ک؛ ظاهری، ز؛ مرادزاده، م؛ کلی، م. ع؛ 1387. ارزیابی پارامترهای مؤثر بر زمین‌لغزش در حوزه آبخیز اعلاء - رود زرد باغملک با استفاده از تکنیک‌های سنجش‌ازدور. GIS و روش‌های آماری. همایش ژئوماتیک 87.
رنگزن، ک؛ کابلی زاده، م؛ منصورنعیمی، ا؛ 1394. پهنه‌بندی خطرپذیری زلزله با استفاده سیستم استنتاج فازی و فرآیند تحلیل سلسه‌مراتبی فازی. فصلنامه سنجش‌ازدور و سامانه اطلاعات جغرافیایی در منابع طبیعی. شماره 6(2). صص 18-1.
سوری، س؛ لشکری پور، غ؛ غفوری، م؛ فرهادی نژاد، ط؛1390. پهنه‌بندی خطر زمین‌لغزش با استفاده از منطق فازی (مطالعه موردی: حوزه چم سنگر). فصلنامه سنجش‌ازدور و سامانه اطلاعات جغرافیایی در منابع طبیعی. شماره 4(4). صص 60-47.
عطائی، محمد؛ 1389. تصمیم‌گیری چندمعیاره فازی. انتشارات دانشگاه صنعتی شاهرود.
قدسی پور، حسن؛ 1392. فرآیند تحلیل سلسله مراتبی(AHP) . دانشگاه صنعتی امیرکبیر (پلی‌تکنیک تهران).
کامران زاد، ف؛ محصا افشار، ع؛ مجرب، م؛ معماریان، ح؛ 1394؛ پهنه‌بندی خطر زمین‌لغزش در استان تهران با استفاده از روش‌های داده محور و تحلیل سلسله مراتبی. علوم زمین. شماره 25(97). صص 114 - 101.
کریمی، م؛ نجفی، م؛ 1391. ارزیابی خطر زمین‌لغزش با استفاده از مدل ترکیبی Fuzzy-AHP در راستای توسعه و امنیت شهری (مطالعه موردی: منطقه یک کلان‌شهر تهران). فصلنامه پژوهش‌های فرسایش محیطی. شماره 2(8). صص 95-77.
کوره پزان دزفولی، امین؛ 1387. اصول تئوری مجموعه‌های فازی. انتشارات جهاد دانشگاهی واحد صنعتی امیرکبیر.
مقیمی، ا؛ باقری سید شکری.، ط؛ صفرراد ،ط؛ 1391. پهنه‌بندی خطر وقوع زمین‌لغزش با استفاده از مدل آنتروپی (مطالعه موردی: اقدیس نساز زاگرس شمال باختری). پژوهش‌های جغرافیای طبیعی. شماره 79. صص 90 – 77.
منهاج، محمد؛ 1388. مبانی شبکه‌های عصبی. تهران: انتشارت دانشگاه صنعتی امیرکبیر.
نصرآزادانی، ا؛ شیرانی، ک؛ 1388. ارزیابی و مقایسه روش‌های پهنه‌بندی آماری دومتغیره با استفاده از GIS مطالعه موردی (حوضه آبخیز دز علیا). همایش ژئوماتیک 88.
Ayalew, L. & Yamagishi, H., 2005. The application of GIS-based logistic regression for landslide susceptibility mapping in Kakuda-Yahiko Mountains. Central Japan, Geomorphology. 65, 15–31.
Baeza, C. & Corominas, J., 1996. Assessment of shallow landslide susceptibility by means of statistical techniques proceedings of the seventh international symposium on landslides: Trondheim: pp 147-153.
Biswajeet Paradhan., 2010, Remote sensing and GIS based Lanslid hazard analysis and cross validation using multivariate logistic regression model on three test ares in Malaysia.
Hattanji, T. & Moriwaki, H., 2009. Morphometric analysis of relic landslides using detailed landslide distribution maps: Implications for forecasting travel distance of future landslides. Journal of Geomorphology. 103, 447-454.
Hu, X. & Weng, Q., 2009. Estimating impervious surfaces from medium spatial resolution imagery using the self-organizing map and multi-layer perceptron neural networks. Remote Sensing of Environment. 113, 2089-2102.
IAEG Commission on Landslides, 1990. Suggested nomenclature for landslides Bulletin of the International Association of Engineering Geology. 41, 13-16.
Jade, S. & Sarkar, S., 1993. Statistical Models for Slope Instability Classification. Engineering geology. 36, 91-98.
Jensen, J.R., 1995, Introductory Digital Image Processing: A Remote Sensing Perspective.University of South Carolina. Third Eddithion.
Kanungo, D., Arora., M., Sarkar, S., & Gupta, R., 2006. A comparative study of conventioonal, ANN Blak Box, Fuzzy and combined neural and fuzzy weighting proccedures for landslide suceptibility zonation in darjeeling himalayas, Engineering Geology. 85, 347-366.
Kavzoglu, T., & Mather, P.M., 2003. The use of backpropagating artificial neural networks in land cover classification. International Journal of Remote Sensing. 24, 4907−4938.
Khezri, S., 2011. Landslide susceptibility in the Zab Basin, northwest of Iran. Procedia-Social and Behavioral Sciences, 726-731.
Lan, H.X., Zhau, C.H., Wang, L.J., Zhang, H.Y., & Li, R.H., 2004. Landslide hazard spatial analysis and prediction using gis in the xiaojiang watershed, yunnan: china, Engineering Geology. 76, 109-128.
Lee, S., Ryu, J.H., Lee, M.J., & Won, J.S., 2006. The application of artificial neural networks to landslide susceptibility mapping at Janghung, Korea, Mathematical Geology. 38(2), 199-220.
Lee, S., Ryu, J.H., Won, J., & Park, H., 2004. Determination and application of the weights for landslide susceptibility mapping using an artificial neural network. Engineering Geology. 71, 289-302.
Melchiorre, C., Matteucci. M., & Azzoni, A., 2008. Artificial neural networks and cluster analysis in landslide susceptibility zonation, Geomorphology. 94, 379 – 400.
Mora, S., & Vahrson, W.G., 1994. Macrozonation methodology for landslide hazard determination. Bulletin of the International Association of Engineering Geology. 31, 49-58.
Naderi, F., Naseri, B., Karimi, H., & Habibi Bibalani, G.H., 2010. Efficiency evaluation of different landslide susceptibility mapping methods (Case study: Zangvan watershed, Ilam province). First international conference of soil and roots engineering relationship (LANDCON1005). Ardebil Province. Iran.
Othman, A.N., Naim, W.M., & Noraini, S., 2012. GIS based multi-criteria decision making for landslide hazard zonation. Procedia-Social and Behavioral Sciences. 35, 595-602
Pareta, K., Kumar, J., & Pareta, U., 2012. Landslide hazard zonation using quantitative methods in gis. International Journal of Geospatial Engineering and Technology. 1(1): 1-9.
Salciarini, D., Godt, J.W., Savage, W.Z., Conversini, P., Baum, R.L., & Michael, J.A., 2006. Modeling regional initiation of rainfall-induced shallow landslides in the eastern Umbria Region of central Italy. Landslides. 3, 181-194.
Srivastava, V., Srivastava. H.B., & Lakhera, R.C., 2010. Fuzzy gamma based geomatic modelling for landslide hazard susceptibility in a part of Tons river valley, northwest Himalaya, India. Geomatics, Natural Hazards & Risk. 3, 225-242.
Torkashvand, A.M., Irani, A., & Sorur, J., 2014. The preparation of landslide map by Landslide Numerical Risk Factor (LNRF) model and Geographic Information System (GIS). The Egyptian Journal of Remote Sensing and Space Science. 17(2), 159-170.
Vahidnia, M.H., Alesheikh, A.A., Ali mohammadi, A., & Hosseinali, F., 2009. Landslide hazard zonation using quantitative methods in gis. International Journal of Civil Engineering. 7(3), 1-14.
Van Westen, C.J., 1993. Application of geographic information systems to landslide hazard zonation. International Institute for Aerospace Survey and Earth Sciences (ITC) Publication. 1(15).
Varnes, D.J., 1984. Landslide hazard zonation: a review of priciples and practice. United Nations Educational, Scientific and Cultural Organization (UNESCO). France.
Wang, L.J., Kazuhide, S., & Shuji, M., 2013. Landslide susceptibility analysis with logistic regression model based On FCM sampling strategy.Computers & Geosciences 57, 81–92.
Yalcin, A., Reis, S., Aydinoglu, A.C., & Yomralioglu, T., 2011. A GIS-based comparative study of frequency ratio, analytical hierarchy process, bivariate statistics and logistics regression methods for landslide susceptibility mapping in Trabzon, NE Turkey. Catena. 85, 274-287.
Yilmaz, I., 2010. Landslide susceptibility mapping using frequency ratio, logistic regression, artificial neural networks and their comparison: A case study from kat landslides (Tokat-Turkey). Computers and Geosciences. 35, 1125-1138.