Vulnerability of Urban Flooding Case Study: Tehran, Darake to Kan

Document Type : مقاله پژوهشی


1 shahid Beheshti

2 Payamnoor


1. Introduction
Nowadays, population increase, progress in science and technology and development of industrial installations with the shortage of places in metropolitan areas have made considerable changes in the morphology of watersheds. Violation to territory of rivers, channels, and streams causes alterations in natural drainage pattern and overflowing due to the lower capacity of the changed channels and streams. This can increase the risk of flooding and inundation of the streets and also the costs of urban maintenance. Moreover, this will considerably increase the possible financial and life damages.

2. Study Area
Tehran is a city located in the southern slopes of Central Alborz downstream many watersheds. Furthermore, the excess expansion of urban areas to 2200 m foothills as well as uneven development and structural difference in physical texture caused the areas to be subject to serious risks of flooding. Among the Tehran municipality regions, the regions 2 and 5 have be developed to absorb the overflow of population and immigrants from central and southern areas of the region. These areas are in the vicinity of the rivers of Darakeh, Kan, and Farahzad, on one hand, and have high rate of constructions, instable residential areas, relatively high density of population and houses, landuse changes, violation to the territory of rivers, and improper use of the channels, on the other hand. As a result, they are subject to flooding. Thus, the areas are highly important due to the possibility of huge flood occurrences.

3. Material and Methods
The data of this study include elevation data extracted from topographic maps (1:25000), climate and hydrometric data (1995-2012), and landuse data from Tehran municipality. The effective or intensifying variables in vulnerability assessment of physical infrastructures in region 2 and 5 downstream the watersheds of Darakeh and Kan have been selected by field observations. As the variables of runoff, slope, aspect, landuse, elevation classes, curvature, old texture, surfaces perpendicular to slope and those parallel to the slope have different measuring units, they have been standardized by pairwise comparison method. For the lands upstream the study area, the runoff has been estimated by SCS (CN) model. Calculation of CN in urban areas has been based on landuse type and percentage of open spaces. The old texture is used in the method because of its influence in flood occurrence due to inadequate drainage, sound management, and permeability of urban structures. The integration of the data has been carried out by fuzzy functions using the weights obtained from the pairwise comparison. For vulnerability assessment, the gamma maps of 0.9, 0.85, and 0.7 have been prepared to compare their correlations with other variables. The gamma 8.5 had the highest correlation with the principal variables. To detect the role of effective factors, we have used water profile and hydrograph with the coefficients using the analysis of Multi-Layer Perceptron Network (ULP).

4. Results and Discussion
The vulnerability map resulting from comparison weights and fuzzy integration functions has indicated that the most vulnerable areas are near the channels; particularly those increase the risk of flooding in urban areas through higher discharge. The comparison of the vulnerability map with the transportation networks indicates that most of the vulnerable areas are coincident with the west-east networks crossing the natural slope of the streams. It also indicates that the most vulnerable areas are intersections of the transportation networks of north-south and west-east. These intersections impede the flow of water over the natural north to south slope of the area. Due to the importance of the volume of runoff upstream, the proportions of the runoff were determined based on the area of each region. The results have also represented that the proportion of runoff from Kan watershed on urban areas was more than others. To assess the entry of Kan watercourse into the city, the Soleghan precipitation station has been selected. Three time series of precipitation has been drawn from 27th to 30th October 2000, 2007, and 2012. Based on the data, flood discharge was calculated in three different states and its long profile and hydrograph was depicted. According to field observations, the Kan valley is 3 meters wide and 1.5 meters high. According to long profiles, water flows are increased with an increase in rainfall; this is along with peak discharges and likely flooding on the hydrograph of Kan watershed.

5. Conclusion
The results of vulnerability assessment in the study area indicated that a combination of upstream natural factors and urban agents make these areas vulnerable against the floods. Although outside the urban areas the lands near the channels and streams are more vulnerable, as also confirmed by field observations, there are some other factors affecting the vulnerability of urban areas. The old texture is greatly important in the vulnerability because it does not have a suitable drainage ability and the available drainage networks are also mainly in the ending part of the areas. Thus, the inundation can intensify the floods or even cause them. The vertical slope surfaces and the curvature in north and northwestern areas of Tehran also show conformity and non-conformity with the drainage and watercourses. The jumps of peak flow in the hydrograph of October 2012 make it necessary to pay more attention to the runoffs of Kan drainage basin as the city of Tehran is experiencing events related to the watershed.


احمدزاده، حسن؛ سعیدآبادی، سعید و الهه نوری؛ 1394. بررسی و پهنه‌بندی مناطق مستعد به وقوع سیل با تأکید بر سیلاب‌های شهری (مطالعه موردی: شهر ماکو). نشریه هیدروژئومورفولوژی. سال 1. شماره 2. صص 23-1.
حسین زاده، سید رضا؛ جهادی طرقی، مهناز؛ 1386. اثرات گسترش شهر مشهد بر الگوی زهکشی طبیعی و تشدید سیلاب‌های شهری. پژوهش‌های جغرافیایی. شماره 61. صص 159-145
حسین زاده، سیدرضا؛ جهادی طرقی، مهناز؛ 1391. بازسازی سیلاب‌های قدیمی رودخانه سه هزار با استفاده از دندروژئومورفولوژی. جغرافیا و مخاطرات محیطی. سال 1. شماره 2.صص: 53-29
سپهر، عادل؛ کاویان، راحیل؛ 1393. طبقه‌بندی تحمل‌پذیری مناطق شهری کلان‌شهر مشهد به مخاطرات محیطی با استفاده از برنامه‌ریزی خطی تعامل تناوبی سیموس (SIMUS). جغرافیا و مخاطرات محیطی. سال سوم. شماره نهم. صص 141-.125
صادقی نیا، علیرضا؛ علیجانی، بهلول؛ ضیائیان فیروزآبادی، پرویز؛ 1391. تحلیل فضایی- زمانی جزیره حرارتی کلان‌شهر تهران با استفاده از سنجش‌ازدور و سیستم اطلاعات جغرافیایی. جغرافیا و مخاطرات محیطی. سال اول. شماره 4. صص 17-1
صادقلو، طاهره؛ سجاسی قیداری، حمدالله؛ 1393. راهبردهای مدیریت مخاطره سیل در مناطق روستایی با مدل SWOC-TOPSIS (مطالعه موردی حوضه آبریز قره چای رامیان). جغرافیا و مخاطرات محیطی. سال سوم. شماره 12. 105-128.
صالحی، اسماعیل؛ رفیعی، یوسف؛ بهتاش، محمدرضا فرزاد؛ آقابابایی، محمدتقی؛1392. پهنه‌بندی خطر سیلاب شهری با استفاده از GIS و فرایند تحلیل سلسله مراتبی فازی (مطالعه موردی: تهران). محیط‌شناسی. سال سی و نهم. شماره 3. صص 188- 179.
قنواتی، عزت‌الله؛ امیر کرم و آقا علیجانی، مرضیه؛ 1391. ارزیابی و پهنه‌بندی خطر رخداد سیل در حوضه فرحزاد (تهران) با استفاده از مدل فازی. مجله جغرافیا و برنامه‌ریزی محیطی. سال 23. شماره 4. صص 138- 121.
قهرودی تالی، منیژه؛ 1388. کاربرد مدل یکپارچه سیلاب شهری در کلان‌شهرها (مطالعه موردی: شمال شرق تهران). مجله جغرافیا و برنامه‌ریزی منطقه‌ای. پیش‌شماره. ص 167 – 178.
قهرودی تالی، منیژه؛ 1391. آسیب‌پذیری خطوط ریلی شمال دشت لوت در مقابل سیلاب. جغرافیا و مخاطرات محیطی. سال 1. شماره 2. صص 18-1
یمانی، مجتبی؛ تورانی، مریم؛ چزغه، سمیرا؛ 1391. تعیین پهنه‌های سیل‌گیر با استفاده از مدل HEC-RAS (مطالعه موردی: بالادست سد طالقان از پل گلینک تا پل وشته). جغرافیا و مخاطرات محیطی. سال 1. شماره 1. صص 16-1.
Banai-Kashami, R. )1989(. A new method for site suitability analysis — The analytic hierarchy process. Environmental Management , 13(6), 685–693.
Bhattacharya, N.)2010(. Flood risk assessment in Barcelona, France. The Netherlands: International institute for geo-information science and earth observation Enscheda (ITC).
Büchele, B., Kreibich H., Kron1, A., Thieken, A., Ihringer, J., Oberle, P., Merz, B. & Nestmann, F. (2006(. Flood-risk mapping: Contributions towards an enhanced assessment of extreme events and associated risks. Natural Hazards and Earth System Sciences, 6, 485–503.
Chan, F., Chan, M., &Tang, N.) 2000(. Evaluation methodologies for technology selection. Journal of Materials Processing Technology, 107, 330–337.
Chang, F. J., Chang, K. Y., & Chang, L. C. )2008(. Counter propagation fuzzy-neural network for city flood control system. Journal of Hydrology, 358(1), 24-34.
Fine, T. L. (1999). Feed forward neural network methodology (3rd ed). New York: Springer-Verlag.
Ghahroudi Tali, M. & Nezammahaleh, M. M. )2013(. Urban flooding management using the natural drainage system case study: Tehran, capital of Iran. Floods: From risk to opportunity.Japan: IAHS Publications.
Hansson, K., Danielson, M., & Ekenberg, L. )2008(. A framework for evaluation of flood management strategies. Journal of Environmental Management, 86, 465-480.
Haykin, S. )1998(. Neural networks: A comprehensive foundation (2nd ed). New York: Prentice Hall .
Jia, J., Wang, J.Z., Liu, X., Xue, Q.K., Li, Z.Q., Kawazoe, Y.,& Zhang, S.B. (2002). Artificial nanocluster crystal: Lattice of identical Al clusters, Applied physics letters, 80 (17), 3186-3188.
Laskar, J. (2003). Frequency map analysis in particle accelerators.. Proceedings of PAC2003", Portland, 12-16 May 2003, 378-382.
Loster, T.,( 1999). Flood trends and global change.Proceedings of Euroconference on global change and catastrophe risk management: Flood risk in Europe .IISA Laxenburg.Austria, 6-9 June 1999.
Malczewski,G. (2008). GIS-based multicriteria decision analysis: A survey of the literature. International Journal of Geographical Information Science, 20(70), 703–726.
Rashid, H. (2011). Interpreting flood disasters and flood hazard perceptions from newspaper discourse: Tale of two floods in the Red River valley, Manitoba, Canada. Applied Geography, 31, 35-45.
Singh, V.P. (1996), Hydrology of disasters, water science and technology library. Kluwer Academic Publishers, 24, 395-425.
The International Disaster Database (EM-DAT). (2016).
Van Alphen B. J., & Stoorvogel, J. J. (2000). A functional approach to soil characterization in support of precision agriculture. Soil Science, American. Journal, 64,1706-1713.
Van Westen, C.(2006), Geoformation Science Earth Observation for municipal risk management; The SLARLM project, International Institute for Geoformation Science and Earth Observation, ITC, P.O. Box 6, 7500 AA Enscheda, The Netherlands.
Zhu, A.X, & Scott, M. (2001), Effects of spatial detail of soil information on watershed modeling. Journal of Hydrology, 284, 57-77.