Evaluation of seismic vulnerability spectrum of cities based on various intensity scenarios using µd, TOPSIS, and GIS Models (Case study of Yazd)

Document Type : Research Article


1 Shahid Chamran University of Ahvaz

2 Shahid Chamran University of Ahvaz.


Vulnerability is a term used to show the amount and extent of damage and the losses caused by natural disasters in different communities (social, formal-physical, etc.). Vulnerabilities is identified as the sensitivity of the environment against the hazards. From among natural disasters, earthquakes can have a vast scope of losses for desert regions. Therefore, in order to reduce and prevent further damage, it is necessary to study its different aspects. The present study which is a developmental-practical using descriptive-analytic method examines the issue in Yazd. Since the seismic predictions based on statistical methods can provide satisfactory results, this study uses quantitative models µd, TOPSIS and GIS models, and Excel and SPSS Software to address the problem. Also, in order to reduce the error rate and to provide more accurate forecasts, 50 social-formal indicators variables were involved in the analysis and evaluation of data. The results of the µd model show that building damage from the earthquakes of up to 5 Merkali almost have no or very little damage. However, if earthquake intensity is more than 7 on the Richter scale, more than 50% of buildings are earthquake-vulnerable in the zone 2. And in the TOPSIS model, Social Vulnerability average in districts 0.412% which zone 2 and 1 with respective TOPSIS of 0.642 and 0.183 had the highest and lowest social vulnerability against earthquake in Yazd.
Earthquakes have long been among the most dangerous natural disasters and always have the highest risks. Earthquake risk is the expected loss through which environmental damages are incurred to the society and environment. In other words, risk is a combination of danger and vulnerability; and since vulnerability may be as diverse as human, functional, social, financial vulnerability or a combination of these, to estimate the risk requires a comprehensive approach. Accordingly, the present research by focusing on the vulnerability of the city against earthquake and using statistical and quantitive models investigate the issue to help organisations involved in preventing and controlling social and natural disasters have the ability to reduce and manage such possible dangers.
Material and Methods
This study is a developmental-practical investigation. It employs combination of descriptive, documentary and analytic documents. Statistical population comprises 50 neighbourhoods in 3 districts of Yazd. 50 variables, including social-physical indicators have been used utilising quantitative and statistical models to rank seismic vulnerability of the districts.
Study Area
Yazd with geographic coordinates 54 degrees, 22 minutes east longitude and 31 degrees, 53 minutes north latitude is the largest historical unit and the administrative Center in the province of Yazd. The average altitude of the city is 1230 meters above sea level. The population growth in Yazd has always been faster than other areas of the province. This has made the population be more than other townships and the whole province. In a single 60 year period (1946-2006), the population grew from 63502 to 194000.
Within the city there is only one known fault. 3 km North East of Yazd, there are deposits of marl and chalk and salt Neogene sandstones and conglomerates with northwest-southeast orientation along the fault. The fault is 47 km of pressure kind. Located in the central position of Iran's regional tectonic, it inherits most tectonic features of other sites.
Geographical location of the area has made the region one of the focal points of tectonic activity one the one hand, and various tectonic quakes with various severity of erosion and sedimentation processes on the other hand.
Results and Discussion
According to the logic of TOPSIS Model provided calculations, district 2 had the second lowest distance with the positive ideal and the maximum distance with the negative ideal. And district one had the farthest distance to the positive ideal and the lowest distance with the negative ideal.
According to the model which determines the average seismic injuries and damage:
District 2 with the highest density of 50% and district 3 with 32% have the lowest population density. Therefore, for this indicator, district 2 is the most vulnerable in terms of social damage. In the case of the socially vulnerable earthquake zone, the area between the city of Yazd.
In low-risk group that is group aged less than 14 years, district 3 with 29% had the highest and district 1 with the lowest rate, about 23%, had the lowest risk.
Regarding road network vulnerability index, district 2 with about 46and district 1 with 18%, had the maximum and minimum vulnerability, respectively.
In addition, building damage in the earthquake of up to 5 Merkali had almost no or very little damage. However, if earthquake intensity is more than 7 on the Richter scale, more than 50% of buildings are earthquake-vulnerable in the zone 2. And in the TOPSIS model, Social Vulnerability average in districts 0.412% which zone 2 and 1 with respective TOPSIS of 0.642 and 0.183 had the highest and lowest social vulnerability against earthquake in Yazd.
Due to the necessity of the issue and regarding the conducted investigations, it was determined that structural damage in the earthquake of up to 5 Merkali are almost no or very little. And even if reached to a seismic intensity of 6 Merkali only about two percent of district 2 are damaged. However, if earthquake intensity is more than 7 on the Richter scale, more than 50% of buildings are earthquake-vulnerable in the zone 2. Therefore, this area of the city has the highest vulnerability to earthquakes. Also Structural damage is district 3 is less than 40% and less than 20% in district one. Statistically, the obtained TOPSIS in the district 1 is 0.183%, in district 2 is 0.642%, and in district 3 is 0.411%. Thus, district 1 and 2 in Yazd are the most vulnerable and the most resistant, respectively, against earthquake in terms of social damage.


ابلقی، علیرضا؛ 1384. یاداشت سردبیر. مجله هفت شهر. سازمان عمران و بهسازی شهری. شماره 18.
احد نژاد روشتی، محسن؛ 1389. ارزیابی آسیب پذیری اجتماعی در برابر زلزله نمونه موردی شهر زنجان. مجله مطالعات و پژوهش‌های شهری و منطقه‌ای. سال دوم. شماره 7.
احدنژاد، محسن، و همکاران؛ 1389. مدل سازی آسیب پذیری ساختمانی شهرها در برابر زلزله با استفاده از روش فرایند تحلیل سلسله مراتبی در محیط سیستم اطلاعات جغرافیایی نمونه موردی شهر زنجان. مجله جغرافیا و توسعه. شماره 19.
احدنژاد، محسن و همکاران؛ بی تا. بر آورد آسیب پذیری شهرها در برابر شدت های مختلف زلزله با استفاده از مدل AHP نمونه موردی شهر خرمدره. دومین کنفرانس مدیریت بحران. نقش فناوری نوین در کاهش آسیب پذیری ناشی از حوادث غیر مترقبه.
احمدی، حمید و بوچانی، محمد حسین؛ 1382. پیشینه زلزله در ایران. ماهنامه شماره 58 شهرداری‌ها.
جایکا- آژانس همکاری بین اللمللی ژاپن؛ 1380. پروژه ریز پهنه بندی لرزه ای تهران بزرگ. سازمان مدیریت بحران، تهران.
جعفری، علی محمد؛ 1377). آمادگی در برابر زلزله، سازمان پژوهش و برنامه‌ریزی آموزشی، تهران.
حاتمی نژاد، حسین و همکاران؛ 1388. ارزیابی میزان آسیب یذیری لرزه ای در شهر، نمونه موردی منطقه 10 شهر تهران. مجله پژوهش های جغرافیای انسانی. شماره 68.
حسین زاده دلیر، کریم؛ 1387. برنامه‌ریزی ناحیه‌ای. چاپ اول. انتشارات سمت.
زیاری، کرامت ا...؛ 1381. طرح پژوهشی بررسی تأثیر حضور و عدم حضور افاقنه در ساختار اشتغال شهر یزد. دانشگاه یزد. یزد.
زینالی، امیرحمزه؛ 1384. جایگاه سازمان های دولتی مسوول بحران‌ها و تهدیدهای. اجتماعی در ایران فصلنامه رفاه اجتماعی،.شماره 16.
سالنامه آماری استان یزد؛ 1375. استانداری یزد.
سالنامه آماری استان یزد؛ 1385. استانداری یزد.
سیلاوی، ط؛ 1385. ارزیابی آسیب پذیری شهر تهران با به کارگیری مدل فازی شهودی. پایانامه کارشناسی ارشد. دانشکده فنی تهران.
شریف‌زادگان، محمد حسین و فتحی، حمید؛ بی‌تا. طراحی و کاربرد مدل‌های فضایی ارزیابی و تحلیل آسیب‌پذیری لرزه‌ای در برنامه‌ریزی و مدیریت شهری. در قسمت آرشیو مجلات sid.
عبداللهی، مجید؛ 1382. مدیریت بحران در نواحی شهری(زلزله و سیل). انتشارات شهرداری‌ها. تهران.
عزیزی، محمد مهدی و اکبری، رضا؛ 1387. ملاحظات شهرسازی در سنجش آسیب پذیری شهرها از زلزله. نشریه هنرهای زیبا، شماره 34.
علیدوستی، سیروس؛ 1371. کاربرد مدیریت بحران در کاهش ضایعات زلزله. انتشارات دانشگاه تهران.
کلانتری خلیل‌آبادی، حسین؛ 1378. برنامه‌ریزی بافت تاریخی شهرها مطالعه موردی شهر یزد. پایانامه کارشناسی ارشد شهرسازی. دانشکده معماری و شهرسازی دانشگاه شهید بهشتی.
کلانتری خلیل‌آبادی، حسین و همکاران؛ 1387. آسیب‌پذیری بافت تاریخی شهر یزد در برابر زلزله. مجله سپهر. شماره 16.
مرندی، سید مرتضی؛ 1382. تحلیل ساختمان‌های آسیب دیده زلزله شهر بم و حومه. شرکت ساختمان و راهسازی 115.
مفضلی، اردشیر و صحفی، ندیمه؛ 1389. تبیین روش شناسی استفاده از مدل ریسک در مدیریت بحران در مناطق شهری، مطالعه موردی استفاده از ارزیابی نیمه کمی ریسک و دارار مدل در تعیین میزان ریسک زلزله در منطقه 13 شهرداری تهران. فصلنامه مدیریت شهری. سال دوم. شماره دوم.
مهرشاهی، داریوش و مهرنهاد، حمید؛ 1383. مورفوتکتونیک و منطق عمده گسلی استان یزد. فصلنامه تحقیقات جغرافیایی. شماره 72.
مودت، الیاس؛ 1390. بررسی پویش مسکن در شهر یزد. پایان نامه کارشناسی. استاد راهنما دکتر محمد حسین سرایی. دانشگاه یزد.
مومنی، مهدی؛ 1377. اصول و روش‌های برنامه‌ریزی ناحیه‌ای. انتشارات گویا.
میرحسینی، محمد حسن؛ 1375. تاریخ یزد، یزد نگین کویر. انجمن کتابخاته های عمومی یزد.
Birkmann J., 2005. Research brief, danger need not spell, but how vulnerable.
Canadian standards association., 1997. Risk management: guideline for decision-makers, canadian standards association. Rexdale, ontario.
Cannon T., 2000. Vulnerability analysis and disasters, Floods,
Cannon T., Twigg J., Rowell J., 2003. Social vulnerability, Sustainable Livelihoods and Disasters, London: Department for international development DFID; Government oftheUnited Kingdom.
Chapman, c.b., 1991. Risk, in investment, procurement and performance in construction. E. & f.n. spon (chapman & hall), london.
Coburn Andrew., Spence, Robin., 2002. Earthquake Protection, second edition John Wiley &son, Ltd.
Cutter S. L., Mitchell J.T., Scott M.S., 2000. Revealing the vulnerability of peopleand places: A case study of Georgetown County, South Carolina, Annals of the Association of American Geographers, No. 90.
Cutter, S., Boruff, B., Shirley, w., 2003. Social vulnerability to environmental hazards, Journal of social quarterly 34(2).
Ebert, A., Kerle, N., Stein, A., 2008. Urban social vulnerability assessment with physical proxies and spsial metrics derived form air-and spaceborne imagery and gis data, Journal of Nathazards, 48(2).
ECHO., 1999. The Geography of Disasters; Geography in Humanitarian Assistance, European Community Humanitarian Office.
Giovinazzi, S., Lagomarsino, S., & Pampanin, S., 2006. Vulnerability Methods and Damage Scenario.
Japanese standards association., 2001. Jisq 2001: guidelines for development and implementation of risk management system. Japanese standards association, japan.
Journal of the International Society for the Presentational Mitigation of Natural Hazard 7(2).
Kreimer, A., Arnold ,A., Carlin ,A., 2003. Building safer cities, The future of disaster risk, Disaster risk management series, Vol. 3, The World bank.
Lantada, N., Pujades, L., & Barbat, A., 2009 .Vulnerability index and capacity spectrum based methods for urban seismic risk evaluation. A comparison, Nat Hazards 51:501–524.
Milutinovic Zoran V, Trendafiloski Goran S., 2003. an Advanced Approach to Earthquake Risk Scenarios with Applications to Different European Towns, RISK-UE – EVK4-CT-2000.
Nakabayashi, Itsuki.,1994. Urban Planning Based on Disaster Risk Assessment. In Disaster Management in Metropolitan Areas for the 21st Century, Proceedings of the IDNDR Aichi/Nagoya International Conference, Nagoya, Japan: 225-239.
Parker, george., 1995. Dimension of risk management : definition and implication for financial service. Risk management problems and solution journal, Mcgraw hill. Vol 51.
Pmbok guide., 2004. A guide to the project management body of knowledge, Project management institute, usa.
Raftery, jhon., 1994. Risk analysis in project management. Chapman & hall , London.
Seismic Risk Analysis as Support to Retrofit Strategies: a European Perspective, NZSEE Conference.
Smith K., 2000. Environmental hazards: Assessing risk and reducing disaster, 3rd Ed,
Tavakoli, B. & Tavakoli, S., 1993. Estimating the Vulnerability and Loss functions of Residential Buildings,
UNDP., 2004.” Reducing disaster risk”, A challenge for development. A global report, New York, Prevention and Recovery, NY 10017, USA: Bureau for Crisis.
UNDRO., 2000. Natural Disasters and Vulnerabilit Nations Disasters Ref.
UNISDR., 2005. Living with Risk: A global review of disaster reduction initiatives. United Nations International Strategy for Disaster Reduction (UN/ISDR). United Nations Publications, New York and Geneva -Vol. 2.
Weichselgartner J., 2001. Disaster mitigation: the concept of vulnerability revisited. Disaster Prevention and Management, Vol. 10, No. 2.