مدل‏ سازی حساسیت زمین‌لغزش با استفاده از الگوریتم شبکه عصبی مصنوعی: مطالعه موردی حوضه آبریز سد شهید عباسپور، شمال‌شرق خوزستان

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری دانشکده علوم جغرافیایی و برنامه ریزی دانشگاه اصفهان، اصفهان، ایران

2 علوم و فنون دریایی خرمشهر، خرمشهر، ایران

3 هیئت علمی دانشکده علوم جغرافیایی و برنامه ریزی دانشگاه اصفهان، اصفهان، ایران

چکیده

زمین‌لغزش‌ها به‌عنوان یکی از مهم‌ترین مخاطرات طبیعی مطرح هستند که هم جان انسان‌ها را تهدید می‌کنند و هم می‌توانند خسارات شدیدی به ‎بار آورند. در این زمینه، تهیه نقشه‌های حساسیت زمین‌لغزش برای برنامه‌ریزی، مدیریت و پیشگیری از وقوع این پدیده و در نتیجه کاهش خسارات ناشی از آن، از اهمیت ویژه‌ای برخوردار است. هدف اصلی این پژوهش، تهیه نقشه حساسیت زمین‌لغزش برای حوضه سد شهید عباسپور با استفاده از روش شبکه عصبی مصنوعی (NNET) است. در این مطالعه، داده‌های مربوط به نقاط زمین‌لغزش به‌صورت تصادفی و با نسبت ۷۰ به ۳۰ بین داده‌های آموزشی و داده‌های آزمون تقسیم شدند. در ادامه پانزده عامل مؤثر بر زمین‌لغزش شامل عوامل توپوگرافیک (ارتفاع، شیب، جهت شیب و انحنای دامنه)، شاخص‌های هیدرولوژیک (SPI و شاخص رطوبت توپوگرافی TWI)، عوامل انسانی (فاصله از جاده) و ویژگی‌های طبیعی (فاصله از رودخانه، زمین‌شناسی، بافت خاک، کاربری اراضی و بارش) مورد بررسی قرار گرفتند. برای اعتبارسنجی مدل پیش‌بینی زمین‌لغزش، از معیارهای مختلفی شامل Accuracy و شاخص‌های آماری RMSE، Kappa، MAE و R-Squared استفاده شده است. نتایج حاصل از این ارزیابی‌ها نشان داد که مدل NNET از عملکرد خوبی با دقت 8543/0 برخوردار است. یافته‌های پژوهش حاکی از آن است که در حوضه سد شهید عباسپور، نزدیکی به رودخانه به‌عنوان مهم‌ترین عامل مؤثر در حساسیت زمین‌لغزش شناسایی شده است. پس از این عامل، شیب دامنه و ویژگی‌های زمین‌شناسی در رتبه‌های بعدی اهمیت قرار دارند. همچنین نتایج نشان می‌دهد که مناطق با بیشترین حساسیت به زمین‌لغزش عمدتاً در بخش‌های جنوب‌غربی و قسمت‌هایی از شمال حوضه واقع شده‌اند. نقشه حساسیت زمین‌لغزش تهیه شده در این تحقیق می‌تواند به عنوان ابزاری ارزشمند در برنامه‌ریزی‌های توسعه‌ای، مدیریت ریسک و پیشگیری از خسارات ناشی از زمین‌لغزش در منطقه مورد مطالعه مورد استفاده قرار گیرد. این یافته‌ها، به مدیران و برنامه‌ریزان کمک می‌کند تا تصمیم‌گیری‌های مناسب‌تری در زمینه توسعه منطقه اتخاذ نمایند.

کلیدواژه‌ها

موضوعات


©2025 The author(s). This is an open access article distributed under Creative Commons Attribution 4.0 International License (CC BY 4.0)

Ali Bakhshi, T., Azizi, Z., Vafaeinejad, A., & Aghamohammadi Zanjirabadi, H. (2020). Survey of area changes in water basins of Shahid Abbaspour Dam caused by 2019 floods using Google Earth Engine. Ecohydrology, 7(2), 345–357. [In Persian] https://doi.org/10.22059/ije.2020.295785.1272
Bao, Y., Zhai, S., Chen, J., Xu, P., Sun, X., Zhan, J., ... & Zhou, X. (2020). The evolution of the Samaoding paleolandslide river blocking event at the upstream reaches of the Jinsha River, Tibetan Plateau. Geomorphology351, 106970. https://doi.org/10.1016/j.geomorph.2020.106970
Benmakhlouf, M., El Kharim, Y., Galindo-Zaldivar, J., & Sahrane, R. (2023). Landslide susceptibility assessment in Western External Rif Chain using machine learning methods. Civil Engineering Journal, 9(12), 3045–3060. https://doi.org/10.28991/CEJ-2023-09-12-018
Esfandiary Darabad, F., Rahimi, M., Navidfar, A., & Arsalan, M. (2020). Assessment of landslide sensitivity by neural network method and vector machine algorithm (Case study: Heyran Road, Ardabil Province). Quantitative Geomorphological Research, 9(3), 18–33. [In Persian] https://doi.org/10.22034/gmpj.2020.122210
Geological and Mineral Exploration Organization of Iran. (2018). Identification of landslide susceptibility in the city of Masjed-e-Suleiman, General Directorate of the South Western Region (Ahvaz). [In Persian]
Ghaedi, S., Amouzegar, S., & Shojaiean, A. (2022). Landslide microzonation using fuzzy grey correlation analysis (case study: Mollaghafar drainage basin, northeast of Khuzestan Province). Advanced Applied Geology12(2), 337-350. [In Persian] https://doi.org/10.22055/AAG.2021.36387.2195
He, Q., Shahabi, H., Shirzadi, A., Li, S., Chen, W., Wang, N., ... & Ahmad, B. B. (2019). Landslide spatial modelling using novel bivariate statistical based Naïve Bayes, RBF Classifier, and RBF Network machine learning algorithms. Science of the Total Environment663, 1-15. https://doi.org/10.1016/j.scitotenv.2019.01.329
Hejazi, A., Rezaeimoghaddam, M., & Naseri, A. (2020). Landslide hazard zoning using artificial neural network models and TOPSIS downstream of Sanandaj Dam. Hydrogeomorphology, 7(24), 65–82. [In Persian] https://doi.org/10.22034/hyd.2020.11060
Hungr, O., Leroueil, S., & Picarelli, L. (2024). The Varnes classification of landslide types, an update. Landslides, 11, 167–194 .https://doi.org/10.1007/s10346-013-0436-y
Ma, S., Chen, J., Wu, S., & Li, Y. (2023). Landslide susceptibility prediction using machine learning methods: A case study of landslides in the Yinghu Lake Basin in Shaanxi. Sustainability15, 15836. https://doi.org/10.3390/su152215836
Majd-Bavi, A., & Mumipour, M. (2022). Landslide susceptibility zonation in Shahid Abbaspour Dam district. Journal of Geography and Environmental Hazards, 10(1), 65-80. [In Persian] https://doi.org/10.22067/geoeh.2021.67029.0
Masruroh, H., Leksono, A. S., & Kurniawan, S. (2023). Developing landslide susceptibility map using Artificial Neural Network (ANN) method for mitigation of land degradation. Journal of Degraded & Mining Lands Management10(3), 4479–4494. https://doi.org/10.15243/jdmlm.2023.103.4479
Mohammadi, A., Shahabi, H., & Bin Ahmad, B. (2018). Integration of InSAR technique, Google Earth images and extensive field survey for landslide inventory in a part of Cameron Highlands, Pahang, Malaysia. Applied Ecology & Environmental Research16(6), 8075-8091. https://dx.doi.org/10.15666/aeer/1606_80758091
Mohammadi, M., Afifi, M. A., & Ghanbari, A. R. (2023). Landslide hazard zoning using a fuzzy inference system in the Izeh River basin. Geographical Sciences, 19(42), 156-176. [In Persian] https://sanad.iau.ir/fa/Journal/geographic/Article/919283
Mostofi, N. (2013). MATLAB User Guide. Tehran Publications. [In Persian]
Mousavi Nadushan, S. S. (2012). Introduction to the R computing language. Tehran, Iran: Shahid Abbaspour University of Water and Electricity Industry. [In Persian]
Pollock, W., Grant, A., Wartman, J., & Abou-Jaoude, G. (2019). Multimodal method for landslide risk analysis. MethodsX6, 827-836.
Rahaman, A., Dondapati, A., Gupta, S., & Raj, R. (2024). Leveraging artificial neural networks for robust landslide susceptibility mapping: A geospatial modeling approach in the ecologically sensitive Nilgiri District, Tamil Nadu. Geohazard Mechanics2(4), 258-269. https://doi.org/10.1016/j.ghm.2024.07.001
Rajabi, M., Rezaeimoghadam, M., & Takzare, A. (2020). Landslide hazard potential zoning using the neural network method (Case study: Alamut watershed in Qazvin Province). Quantitative Geomorphological Research9(3), 185-171. [In Persian] https://doi.org/10.22034/gmpj.2020.122223
Sadati, S. H., Mousavi, S. R., Vahabzadeh Kebria, G., & Roshun, S. H. (2025). Evaluation of random forest and support vector machine models in landslide risk mapping (Case study: Tajan Basin, Mazandaran Province). Journal of Natural Environmental Hazards, 1-1. [In Persian] https://doi.org/10.22111/jneh.2025.50031.2071
Sadeghi Balochi, M., & Alian, S., (2025), Landslide Hazard Assessment and Visualization Using Artificial Neural Network Method (Case Study of Lahijan County). Paper presented at the Proceedings of the 16th International Conference of the Iranian Society for Operations Research, Ramsar. [In Persian] https://civilica.com/doc/1920698
Selamat, S. N., Majid, N. A., Taha, M. R., & Osman, A. (2022). Landslide Susceptibility Model Using Artificial Neural Network (ANN) Approach in Langat River Basin, Selangor, Malaysia. Land, 11, 833. https://doi.org/10.3390/ land11060833
Sun, D., Ding, Y., Zhang, J., Wen, H., Wang, Y., Xu, J., ... & Liu, R. (2022). Essential insights into decision mechanism of landslide susceptibility mapping based on different machine learning models. Geocarto International, 1-29. https://doi.org/10.1080/10106049.2022.2146763
Sun, X., Chen, J., Han, X., Bao, Y., Zhan, J., & Peng, W. (2020). Application of a GIS-based slope unit method for landslide susceptibility mapping along the rapidly uplifting section of the upper Jinsha River, South-Western China. Engineering Geology and the Environment, 79, 533–549. ttps://doi.org/10.1007/s10064-019-01572-5
Talaei, R., & Shadfar, S. (2023). Landslide susceptibility modeling using artificial neural network and logistic regression methods at the Saqezchay Basin, south of Ardabil Province. Watershed Engineering and Management, 15(3), 481-503. [In Persian] https://doi.org/10.22092/ijwmse.2022.360475.1996
Tayebi far, A. (2024). Preparing Landslide Hazard Sensitivity Maps Using Machine Learning Methods (Case Study: Kermanshah). (Master's Thesis). University of Isfahan. [In Persian]
Wahba, M., Essam, R., El-Rawy, M., Al-Arifi, N., Abdalla, F., & Elsadek, W. M. (2024). Forecasting of flash flood susceptibility mapping using random forest regression model and geographic information systems. Heliyon10(13), e33982. https://doi.org/10.1016/j.heliyon.2024.e33982
Zakerinejad, R., & Amoshahi, N. (2022). Assessment of Landslide Hazard Using Remote sensing data and the Maximum Entropy Model (Case Study: Kome watershed, in south of Isfahan Province). Quantitative Geomorphological Research, 11(2), 128-149. [In Persian] https://doi.org/10.22034/gmpj.2022.340900.1349
CAPTCHA Image