شناسایی منشاء گردوغبار با استفاده از تنسور مکانی-زمانی عمق اپتیکی آئروسل در محدوده شهرستان ایلام

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد، رشته مهندسی نقشه برداری، گرایش سیستم اطلاعات مکانی، گروه مهندسی عمران، دانشکده فنی و مهندسی، دانشگاه فردوسی

2 گروه مهندسی عمران، دانشکده مهندسی، دانشگاه فردوسی مشهد

چکیده

یکی از عوامل آلودگی هوا پدیده گردوغبار می‌باشد که باعث خسارات زیادی به منابع اقتصادی، اجتماعی و انسانی مختلف شده است. پدیده گردوغبار در بخش‌هایی از جهان ازجمله مناطق خشک و نیمه‌خشک رخ می‌دهد که از عوامل طبیعی و انسانی ناشی می‌شود. این پژوهش به شناسایی منشاء گردوغبار در محدوده شهرستان ایلام با استفاده از تنسور مکانی-زمانی عمق اپتیکی آئروسل (AOD) با داده‌های سنجنده مادیس در دوره زمانی ماه های مارس تا ژوئن 2022 پرداخته است. ابتدا از داده‌های هواشناسی، روزهایی پر گردوغبار استخراج‌ شده و تنسور مکانی-زمانی عمق اپتیکی آئروسل تولید شد. دلیل استفاده از تنسور، بررسی تغییرات حجم عمده‌ای از داده‌ها به‌صورت مکانی وزمانی در یک دوره مطالعاتی به‌طور هم‌زمان بوده است. نتایج مقایسه تنسور مربوطه با داده‌های هواشناسی متناظر نشان داد که هرگاه عمق اپتیکی آئروسل از 5/0 بالاتر باشد، گردوغبار در آن محدوده وجود دارد. تحلیل تنسور مکانی-زمانی گردوغبار نشان داد که میزان گردوغبار با سرعت باد ارتباط مستقیم دارد و هرگاه سرعت باد از 15 متر بر ثانیه عبور کند، گردوغبار رخ می‌دهد. در نهایت با شناسایی تغییرات مکانی AOD چهار منبع گردوغبار (بلد، بین‌النهرین، میسان و واسط) در محدوده مطالعاتی وجود دارد که بین‌النهرین به‌عنوان یکی از مناطق بالقوه گردوغبار شناسایی شد. تحلیل الگوی زمانی AOD حاکی از روند افزایشی آن در ماه می است. بیشترین مقدار AOD با 85/3 در ماه می نشان‌دهنده میزان گردوغبار زیادی است. با بررسی همبستگی بین گردوغبار ایلام و مراکز شناسایی شده، مدل رگرسیونی شهرستان ایلام ارتباط بیشتری با منطقه واسط دارد و ضریب همبستگی آن 96/82 درصد است.

کلیدواژه‌ها

موضوعات


©2025 The author(s). This is an open access article distributed under Creative Commons Attribution 4.0 International License (CC BY 4.0)

Abedzadeh, H. (2005). Synoptic Analysis of Dust Systems in the West. (Master's thesis). Faculty of Literature and Humanities, Razi University of Kermanshah. [In Persian]
Alam, K., Qureshi, S., & Blaschke, T. (2011). Monitoring spatio-temporal aerosol patterns over Pakistan based on MODIS, TOMS and MISR satellite data and a HYSPLIT model. Atmospheric Environment, 45(27), 4641-4651. https://doi.org/10.1016/j.atmosenv.2011.05.055
Al-Hemoud, A., Al-Dousari, A., Misak, R., Al-Sudairawi, M., Naseeb, A., Al-Dashti H., & Al-Dousari, N. (2019). Economic impact and risk assessment of sand and dust storms (SDS) on the oil and gas industry in Kuwait. Sustainability, 11(1), 200. https://doi.org/10.3390/su11010200
Ali Bakhshi, T., Azizi, Z., Vafaeinejad, A., & Aghamohammadi Zanjirabadi, H. (2020). Survey of area changes in water basins of Shahid Abbaspour dam caused by 2019 floods using Google Earth Engine. Journal of Ecohydrology, 7(2), 345-357. [In Persian] https://doi.org/10.22059/ije.2020.295785.1272
Amani, M., Ghorbanian, A., Ahmadi, S. A., Kakooei, M., Moghimi, A., Mirmazloumi, S. M., ... & Brisco, B. (2020). Google earth engine cloud computing platform for remote sensing big data applications: A comprehensive review. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing13, 5326-5350. https://doi.org/10.1109/JSTARS.2020.3021052
Ashrafi, K., Shafiepour-Motlagh, M., Aslemand, A., & Ghader, S. (2014). Dust storm simulation over Iran using HYSPLIT. Journal of Environmental Health Science and Engineering12, 1-9. https://doi.org/10.1186/2052-336X-12-9
Azimzadeh, H., Montazerghaem, M., Torabi Mirzaei, F., & Tajamlian, M. (2010). Measuring the falling dust of Yazd city using MDCO sediment trap during the three-month period of summer 2010. Paper presented at the Proceedings of the 2nd National Conference on Wind Erosion and Dust Storms, February 2010, Iranian Desert Control Management Association, Yazd University. [In Persian]
Chamanpira, R., Karimi Sangchini, E., & Norouzi, A. A. (2021). Temporal and spatial analysis of dust occurrence in Lorestan province. Journal of Environmental Science and Technology, 23(6), 57-70. [In Persian] https://doi.org/10.30495/JEST.2021.53171.5086
Chung, Y. S., Kim, H. S., Jugder, D., Natsagdorj, L., & Chen, S. J. (2003). On sand and duststorms and associated significant dustfall observed in Chongju-Chongwon, Korea during 1997–2000. Water, Air, and Soil Pollution: Focus, 3, 5-19. https://doi.org/10.1023/A:1023242000367
Draxler, R. R., Gillette, D. A., Kirkpatrick, J. S., & Heller, J. (2001). Estimating PM10 air concentrations from dust storms in Iraq, Kuwait and Saudi Arabia. Atmospheric Environment, 35(25), 4315-4330. https://doi.org/10.1016/S1352-2310(01)00159-5
Formenti, P., Schütz, L., Balkanski, Y., Desboeufs, K., Ebert, M., Kandler, K., ... & Zhang, D. (2011). Recent progress in understanding physical and chemical properties of African and Asian mineral dust. Atmospheric Chemistry and Physics11(16), 8231-8256. https://doi.org/10.5194/acp-11-8231-2011
Golmohammadi, M., Etemadfrad, H., & Kharaghani, H. (2023). Spatio-temporal analysis of the covid-19 impacts on the using Chicago urban shared bicycles by tensor-based approach. Journal of Geospatial Information Technology, 10(3) ,95-119. [In Persian] https://dx.doi.org/10.52547/jgit.10.3.95
Goodarzi, M., Hoseini, A., & Ahmadi, H. (2018). Assessing temporal and spatial distribution of dust storm in the south and South West of Iran. Iran-Watershed Management Science & Engineering, 11(39), 1-10. [In Persian] https://dor.isc.ac/dor/20.1001.1.20089554.1396.11.39.9.7
Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., & Moore, R. (2017). Google Earth Engine, planetary-scale geospatial analysis for everyone. Remote Sensing of Environment 202, 18-27. https://doi.org/10.1016/j.rse.2017.06.031
Goudarzi, G. R., Shirmardi, M., Naimabadi, A., Ghadiri, A., & Sajedifar, J. (2019). Chemical and organic characteristics of PM2.5 particles and their in-vitro cytotoxic effects on lung cells, The Middle East dust storms in Ahvaz, Iran. Science of The Total Environment, 655, 434-445. https://doi.org/10.1016/j.scitotenv.2018.11.153
Goudie, A. S., & Middleton, N. J. (2001) Saharan Dust Storms, Nature and Consequences. Earth Sciences Review, 56, 179-204. https://doi.org/10.1016/S0012-8252(01)00067-8
Hamidi, M., Kavianpour, M. R., & Shao, Y. (2013). Synoptic analysis of dust storms in the Middle East. Asia-Pacific Journal of Atmospheric Sciences, 49, 279-286. https://doi.org/10.1007/s13143-013-0027-9
Karami, S., Hossein Hamzeh, N., Alam, K., Noori, F., & Ranjbar Saadat Abadi, A. (2021). Spatio-temporal and synoptic changes in dust at the three islands in the Persian Gulf region. Journal of Atmospheric and Solar-Terrestrial Physics, 214, 105539. https://doi.org/10.1016/j.jastp.2021.105539
Khalid, M. (2020). Geopoliti`cs of water conflict in West Asia, The Tigris-Euphrates Basin. FINS Journal of Diplomacy and Strategy, 4(1), 1-7.
Kim, J. (2008). Transport routes and source regions of Asian dust observed in Korea during the past 40 years (1965-2004). Atmospheric Environmental, 42(19), 4778-4789. https://doi.org/10.1016/j.atmosenv.2008.01.040
Lee, H., Kim, H., Honda, Y., Lim, Y. H., & Yi, S. (2013). Effect of Asian dust storms on daily mortality in seven metropolitan cities of Korea. Atmospheric Environment, 79, 510-517. https://doi.org/10.1016/j.atmosenv.2013.06.046
Li, D., Yu, Z., Wu, F., Luo, W., Hu, Y., & Yuan, L. (2020). The tensor-based feature analysis of spatiotemporal field data with heterogeneity. Earth and Space Science, 7(2), e2019EA001037. https://doi.org/10.1029/2019EA001037
Lyapustin, A., Wang, Y., Korkin, S., & Huang, D. (2018). MODIS collection 6 MAIAC algorithm. Atmospheric Measurement Techniques, 11(10), 5741-5765. https://doi.org/10.5194/amt-11-5741-2018
Mianabadi, H., & Amini, A. (2019). Complexity of water, politics, and environment in the Euphrates and Tigris river basins. Geopolitics Quarterly, 15(2), 54-86. [In Persian] https://dor.isc.ac/dor/20.1001.1.17354331.1398.15.54.3.6
Middleton, N. (2017). Desert dust hazards, A global review. Aeolian Research, 24, 53-63. https://doi.org/10.1016/j.aeolia.2016.12.001
Mohammadi, F., & Zargari, M. (2014). Investigation and analysis of the temporal-spatial distribution of dust in Tehran province. Paper presented at the Proceedings of the International Conference on Geography, Urban Planning and Sustainable Development, Tehran, Koomesh Environmental Society, University of Technology. [In Persian]
Namdari, S., Karimi, N., Sorooshian, A., Mohammadi, G., & Sehatkashani, S. (2018). Impacts of climate and synoptic fluctuations on dust storm activity over the Middle East. Atmospheric Environment, 173, 265-276. https://doi.org/10.1016/j.atmosenv.2017.11.016
Namdari, S., Valizade, K. K., Rasuly, A. A., & Sari Sarraf, B. (2016). Spatio-temporal analysis of MODIS AOD over western part of Iran. Arabian Journal of Geosciences, 9(3), 1-11. https://doi.org/10.1007/s12517-015-2029-7
Qin, W., Liu, Y., Wang, L., Lin, A., Xia, X., Che, H., ... & Zhang, M. (2018). Characteristic and driving factors of aerosol optical depth over mainland China during 1980–2017. Remote Sensing10(7), 1064. https://doi.org/10.3390/rs10071064
Remer, L. A., Tanré, D., Kaufman, Y. J., Levy, R., & Mattoo, S. (2006). Algorithm for remote sensing of tropospheric aerosol from MODIS: Collection 005. National Aeronautics and Space Administration1490. https://modis.gsfc.nasa.gov
Rezaei Moghaddam, M. H., Sedighi, A., Fasihi, S., & Karimi Firozjaei, M. (2018). Effect of environmental policies in combating aeolian desertification over Sejzy Plain of Iran. Aeolian Research, 35, 19-28. https://doi.org/10.1016/j.aeolia.2018.09.001
Schepanski, K., Tegen, I., & Macke, A. (2012). Comparison of satellite based observations of Saharan dust source areas. Remote Sensing of Environment, 123, 90-97. https://doi.org/10.1016/j.rse.2012.03.019
Shahsavani, A., Naddafi, K., Haghighifard, N. J., Mesdaghinia, A., Yunesian, M., Nabizadeh, R., ... & Goudarzi, G. (2012). The evaluation of PM10, PM2. 5, and PM1 concentrations during the Middle Eastern Dust (MED) events in Ahvaz, Iran, from April through September 2010. Journal of Arid Environments77, 72-83. https://doi.org/10.1016/j.jaridenv.2011.09.007
Shi, L., Zhang, J., Yao, F., Zhang, D., & Guo, H. (2021). Drivers to dust emissions over dust belt from 1980 to 2018 and their variation in two global warming phases. Science Total Environment, 767, 144860. https://doi.org/10.1016/j.scitotenv.2020.144860
Soleimany, A., Grubliauskas, R., & Šerevičienė, V. (2021). Application of satellite data and GIS services for studying air pollutants in Lithuania (Case study, Kaunas city). Air Quality Atmosphere and Health, 14, 411-429. https://doi.org/10.1007/s11869-020-00946-z
Soleimany, A., Solgi, E., Ashrafi, K., Jafari, R., & Grubliauskas, R. (2022). Temporal and spatial distribution mapping of particulate matter in southwest of Iran using remote sensing, GIS, and statistical techniques. Air Qual Atmos Health, 15, 1057-1078. https://doi.org/10.1007/s11869-022-01179-y
Stafoggia, M., Bellander, T., Bucci, S., Davoli, M., De Hoogh, K., De'Donato, F., ... & Schwartz, J. (2019). Estimation of daily PM10 and PM2. 5 concentrations in Italy, 2013–2015, using a spatiotemporal land-use random-forest model. Environment International124, 170-179. https://doi.org/10.1016/j.envint.2019.01.016
Taghavi, F., Owlad, E., & Ackerman, S. A. (2017). Enhancement and identification of dust events in the south-west region of Iran using satellite observations. Journal of Earth System Science, 126, 1-17. https://doi.org/10.1007/s12040-017-0808-0
Wang, X., Zhou, Z., & Dong, Z. (2006). Control of dust emissions by geomorphic conditions, wind environments and land use in northern China, an examination based on dust storm frequency from 1960 to 2003. Geomorphology, 81(3-4), 292-308. https://doi.org/10.1016/j.geomorph.2006.04.015
Yu, Y., Kalashnikova, O. V., Garay, M. J., Lee, H., & Notaro, M. (2018). Identification and characterization of dust source regions across North Africa and the Middle East using MISR satellite observations. Geophysical Research Letters, 45(13), 6690-6701. https://doi.org/10.1029/2018GL078324
CAPTCHA Image