ارزیابی حساسیت زمین‌لغزش با استفاده از مدل‌های نسبت فراوانی و منطق فازی (مطالعه موردی: آزادراه خرم‌آباد-اراک)

نوع مقاله : مطالعه موردی

نویسنده

دانشیار، گروه زمین‌شناسی، واحد خرم‌آباد، دانشگاه آزاد اسلامی، خرم‌آباد، ایران

چکیده

پهنه‌بندی خطر زمین‌لغزش نقش مهمی در توسعه زیرساخت‌های ایمن و قابل‌دوام، شهرنشینی، کاربری زمین و برنامه‌ریزی زیست‌محیطی ایفا می‌کند. شناسایی و تعیین مناطق حساس و مستعد لغزش می‌تواند ضمن جلوگیری از بروز آسیب‌ها، زمینه را برای اجرای طرح‌های پایدارسازی دامنه‌ها فراهم سازد. هدف اصلی این مطالعه تهیه نقشه پراکنش زمین‌لغزش‌ها، شناسایی عوامل مؤثر بر لغزش و پهنه‌بندی خطر آن در آزادراه خرم‌آباد-اراک (قطعه خرم‌آباد تا بروجرد) است. بدین منظور با استفاده از تصاویر ماهواره‌ای و مطالعات میدانی نقشه پراکنش لغزش‌ها تهیه و با استفاده از مدل نسبت فراوانی (FR) عوامل مؤثر بر لغزش شامل شیب، لیتولوژی، جهت شیب، طبقات ارتفاعی، کاربری زمین، بارندگی و فاصله از عوامل گسل و شبکه آبراهه‌ها مورد تجزیه‌وتحلیل قرار گرفته است. در این مطالعه به‌منظور پهنه‌بندی خطر زمین‌لغزش از روش منطق فازی (گامای 9/0) استفاده شده است. بر اساس نتایج به دست آمده نقشه خطر زمین‌لغزش حاصل به پنج طبقه، مناطق خطر بسیار کم (%55/18)، کم (%67/30)، متوسط ​​(%51/26)، زیاد (%15/18) و بسیار زیاد (%12/6) تقسیم‌بندی و درنهایت با استفاده از منحنی Receiver Operating Characteristic (ROC) اعتبارسنجی شد. نتایج تحلیل منحنی ROC برای روش گامای فازی نشان داد که نقشه حساسیت زمین‌لغزش تهیه شده در منطقه موردمطالعه با سطح زیر منحنی 94/0AUC= دارای قدرت پیش‌بینی عالی است.

چکیده تصویری

ارزیابی حساسیت زمین‌لغزش با استفاده از مدل‌های نسبت فراوانی و منطق فازی (مطالعه موردی: آزادراه خرم‌آباد-اراک)

کلیدواژه‌ها


پورقاسمی، حمیدرضا؛ مرادی، حمیدرضا؛ فاطمی عقدا، محمود؛ مهدوی فر، محمدرضا؛ محمدی، مجید؛ 1388. ارزیابی خطر زمین‌لغزش با استفاده از روش تصمیم‌گیری چند معیاره فازی. مجله علوم و مهندسی آبخیزداری ایران. شماره 8، صص 51-62. https://www.sid.ir/paper/134813/fa
دسترنج، علی؛ وکیلی تجره، فرزانه؛ نور، حمزه؛ 1400. ارزیابی پهنه‌های حساس به وقوع زمین‌لغزش در رشته‌کوه بینالود. نشریه علوم و مهندسی آبخیزداری ایران. شماره 53. صص 12-22.
رمضانی، بهمن؛ ابراهیمی، هدی؛ 1388. زمین‌لغزش و راهکارهای تثبیت آن. فصلنامه جغرافیایی آمایش محیط. شماره 7. صص 129-139. https://www.magiran.com/paper/902037
زالی، مهراب؛ شاهدی، کاکا؛ 1400. ارزیابی حساسیت زمین‌لغزش با استفاده از رویکرد منطق فازی و سامانه اطلاعات جغرافیایی در حوزه آبخیز نکارود. نشریه مدل‌سازی و مدیریت آب‌وخاک. شماره 1. صص 67-80.
 
Akgun A, Dag S, Bulut F., 2007. Landslide susceptibility mapping for a landslide-prone area (Findikli, NE of Turkey) by likelihood-frequency ratio and weighted linear combination models. Eng. Geol., 54: 1127-1143. https://doi.org/10.1007/s00254-007-0882-8
Anbalagan R, Kumar R, Lakshmanan K, Parida S, Neethu S., 2015. Landslide hazard zonation mapping using frequency ratio and fuzzy logic approach, a case study of Lachung Valley, Sikkim. Geoenvironmental Disasters, 2(6): 1-17. DOI:10.1186/s40677-014-0009-y
Bera A, Mukhopadhyay BP, Das D., 2019. Landslide hazard zonation mapping using multicriteria analysis with the help of GIS techniques: a case study from Eastern Himalayas, Namchi, South Sikkim. Natural Hazards, 96(2): 935-959. https://doi.org/10.1007/s11069-019-03580-w
Bui DT, Pradhan B, Lofman O, Revhaug I, Dick O., 2012. Spatial prediction of landslide hazards in Hoa Binh province (Vietnam): A comparative assessment of the efficacy of evidential belief functions and fuzzy logic models. CATENA, 96: 28–40. https:// doi.org/ 10.1016/j.catena.2012.04.001
Chen W, Chai H, Sun X, Wang Q, Ding X, Hong H., 2016. A GIS-based comparative study of frequency ratio, statistical index and weights-of-evidence models in landslide susceptibility mapping. Arab. J. Geosci., 9(3): p. 204. https://doi.org/10.1007/s12517-015-2150-7
Dai FC, Lee CF., 2001. Terrain-based mapping of landslide susceptibility using a geographical information system: a case study. Canadian Geot Journal, 38(5):911–923. DOI:10.1139/t01-021
Ding Q, Chen W, Hong H., 2017. Application of frequency ratio, weights of evidence and evidential belief function models in landslide susceptibility mapping. Geocarto International, 32(6): 619-639. DOI:10.1080/10106049.2016.1165294
Du G, Zhang Y, Iqbal J, Yang Z, Yao X., 2017. Landslide susceptibility mapping using an integrated model of information value method and logistic regression in the Bailongjiang watershed, Gansu Province, China. Journal of Mountain Sci., 14(2):249–268. https:// doi.org/ 10.1007/s11629-016-4126-9
Fall M, Azzam R, Noubactep C., 2006. A multi-method approach to study the stability of natural slopes and landslide susceptibility mapping. Eng Geol, 82:241–263. https:// doi.org/ 10.1016/ j.enggeo.2005.11.007
Kumar P, Mital A, Ray PKC, Chattoraj SL., 2021. Landslide Hazard and Risk Assessment Along NH-108 in Parts of Lesser Himalaya, Uttarkashi, Using Weighted Overlay Method. Geohazards, 86: 163-180. https://doi.org/10.1007/978-981-15-6233-4_12
Mondal S, Maiti R. 2013. Integrating the analytical hierarchy process (AHP) and the frequency ratio (FR) model in landslide susceptibility mapping of Shiv-khola watershed. Int. J. of Dis. Risk Sci., 4(4): 200-212. https://doi.org/10.1007/s13753-013-0021-y
Panchal S, Shrivastava AK., 2021. Landslide hazard assessment using analytic hierarchy process (AHP): A case study of National Highway 5 in India. Ain Shams Engineering Journal, https://doi.org/10.1016/j.asej.2021.10.021.
Shano L, Raghuvanshi TK, Meten M., 2022. Landslide Hazard Zonation using Logistic Regression Model: The Case of Shafe and Baso Catchments, Gamo Highland, Southern Ethiopia. Geotech Geol Eng., 40, 83–101. https://doi.org/10.1007/s10706-021-01873-1
Singh K.  Kumar V., 2018. Hazard assessment of landslide disaster using information value method and analytical hierarchy process in highly tectonic Chamba region in bosom of Himalaya. J Mountain Sci., 15 (4): 808-824. https://doi.org/10.1007/s11629-017-4634-2
Sur U, Singh P, Rai PK., 2021. Landslide probability mapping by considering fuzzy numerical risk factor (FNRF) and landscape change for road corridor of Uttarakhand, India. Environ Dev Sustain, 23: 13526–13554. https://doi.org/10.1007/s10668-021-01226-1
Tanaka K., 1996. An Introduction to Fuzzy Logic for Practical Applications. Springer New York, 148p. https://link.springer.com/book/9780387948072
Van Westen CJ, Rengers N, Soeters R., 2003. Use of Geomorphological Information in Indirect Landslide Susceptibility Assessment. In: Natural Hazards, Vol. 30. Kluwer Academic Publishers: 330–419. https://doi.org/10.1023/B:NHAZ.0000007097.42735.9e
Yesilnacar E, Topal T., 2005. Landslide susceptibility mapping: a comparison of logistic regression and neural networks methods in a medium scale study, Hendek region (Turkey). Engineering Geology, 79(3), 251-266. https://doi.org/10.1016/j.enggeo.2005.02.002
CAPTCHA Image