Abbas, A., Ekowati, D., Suhariadi, F., & Fenitra, R. M. (2023). Health implications, leaders societies, and climate change: a global review.
Ecological footprints of climate change: Adaptive approaches and sustainability, 653-675.
https://doi.org/10.1007/978-3-031-15501-7_26
Aguilera, R., Luo, N., Basu, R., Wu, J., Clemesha, R., Gershunov, A., & Benmarhnia, T. (2023). A novel ensemble-based statistical approach to estimate daily wildfire-specific PM
2.5 in California (2006–2020).
Environment International, 171, 107719.
https://doi.org/10.1016/j.envint.2022.107719
Ahani, I. K., Salari, M., & Shadman, A. (2019). Statistical models for multi-step-ahead forecasting of fine particulate matter in urban areas.
Atmospheric Pollution Research, 10(3), 689-700.
https://doi.org/10.1016/j.apr.2018.11.006
Athira, V., Geetha, P., Vinayakumar, R., & Soman, K. P. (2018). DeepAirNet: Applying recurrent networks for air quality prediction.
Procedia Computer Science, 132, 1394-1403.
https://doi.org/10.1016/j.procs.2018.05.068
Ayus, I., Natarajan, N., & Gupta, D. (2023). Comparison of machine learning and deep learning techniques for the prediction of air pollution: a case study from China.
Asian Journal of Atmospheric Environment, 17(1), 4.
https://doi.org/10.1007/s44273-023-00005-w
Bai, L., Wang, J., Ma, X., & Lu, H. (2018). Air pollution forecasts: An overview.
International Journal of Environmental Research and Public Health, 15(4), 780.
https://doi.org/10.3390/ijerph15040780
Beckerman, B. S., Jerrett, M., Serre, M., Martin, R. V., Lee, S. J., Van Donkelaar, A., … & Burnett, R. T. (2013). A hybrid approach to estimating national scale spatiotemporal variability of PM2. 5 in the contiguous United States.
Environmental Science & Technology, 47(13), 7233-7241.
https://doi.org/10.1021/es400039u
Bell, M. L., Dominici, F., Ebisu, K., Zeger, S. L., & Samet, J. M. (2007). Spatial and temporal variation in PM
2.5 chemical composition in the United States for health effects studies.
Environmental Health Perspectives, 115(7), 989-995.
https://doi.org/10.1289/ehp.962
Bono, R., Tassinari, R., Bellisario, V., Gilli, G., Pazzi, M., Pirro, V., ... & Piccioni, P. (2015). Urban air and tobacco smoke as conditions that increase the risk of oxidative stress and respiratory response in youth.
Environmental Research, 137, 141-146.
https://doi.org/10.1016/j.envres.2014.12.008
Chen, B., You, S., Ye, Y., Fu, Y., Ye, Z., Deng, J., … & Hong, Y. (2021). An interpretable self-adaptive deep neural network for estimating daily spatially-continuous PM
2.5 concentrations across China.
Science of The Total Environment, 768, 144724.
https://doi.org/10.1016/j.scitotenv.2020.144724
Chen, L., Wu, Z., Tu, W., & Cao, Z. (2020). Applying LUR model to estimate spatial variation of PM
2.5 in the Greater Bay Area, China.
In Spatiotemporal Analysis of Air Pollution and Its Application in Public Health, 207-215.
https://doi.org/10.1016/B978-0-12-815822-7.00010-8
Chen, X., Zhang, W., He, J., Zhang, L., Guo, H., Li, J., & Gu, X. (2024). Mapping PM
2.5 concentration from the top-of-atmosphere reflectance of Himawari-8 via an ensemble stacking model.
Atmospheric Environment, 120560.
https://doi.org/10.1016/j.atmosenv.2024.120560
Chudnovsky, A., Tang, C., Lyapustin, A., Wang, Y., Schwartz, J., & Koutrakis, P. J. A. C. (2013). A critical assessment of high-resolution aerosol optical depth retrievals for fine particulate matter predictions.
Atmospheric Chemistry and Physics, 13(21), 10907-10917.
https://doi.org/10.5194/acp-13-10907-2013
Chung, J., Gulcehre, C., Cho, K., & Bengio, Y. (2014). Empirical evaluation of gated recurrent neural networks on sequence modeling.
arXiv preprint arXiv:1412.3555.
https://doi.org/10.48550/arXiv.1412.3555
Cortina–Januchs, M. G., Quintanilla–Dominguez, J., Vega–Corona, A., & Andina, D. (2015). Development of a model for forecasting of PM
10 concentrations in Salamanca, Mexico.
Atmospheric Pollution Research, 6(4), 626-634.
https://doi.org/10.5094/APR.2015.071
Das Chagas Moura, M., Zio, E., Lins, I. D., & Droguett, E. (2011). Failure and reliability prediction by support vector machines regression of time series data.
Reliability Engineering & System Safety, 96(11), 1527-1534.
https://doi.org/10.1016/j.ress.2011.06.006
De Hoogh, K., Gulliver, J., van Donkelaar, A., Martin, R. V., Marshall, J. D., Bechle, M. J., ... & Hoek, G. (2016). Development of West-European PM
2.5 and NO
2 land use regression models incorporating satellite-derived and chemical transport modelling data.
Environmental Research, 151, 1-10.
https://doi.org/10.1016/j.envres.2016.07.005
Enebish, T., Chau, K., Jadamba, B., & Franklin, M. (2021). Predicting ambient PM
2.5 concentrations in Ulaanbaatar, Mongolia with machine learning approaches.
Journal of Exposure Science & Environmental Epidemiology, 31(4), 699-708.
https://doi.org/10.1038/s41370-020-0257-8
Feng, L., Li, Y., Wang, Y., & Du, Q. (2020). Estimating hourly and continuous ground-level PM
2.5 concentrations using an ensemble learning algorithm: The ST-stacking model.
Atmospheric Environment, 223, 117242.
https://doi.org/10.1016/j.atmosenv.2019.117242
Fotheringham, A. S., Charlton, M. E., & Brunsdon, C. (1998). Geographically weighted regression: a natural evolution of the expansion method for spatial data analysis.
Environment and planning A, 30(11), 1905-1927.
https://doi.org/10.1068/a301905
Geng, G., Zhang, Q., Martin, R. V., Van Donkelaar, A., Hong, H., Che, H., … & He, K. (2015). Estimating long-term PM
2.5 concentrations in China using satellite-based aerosol optical depth and a chemical transport model.
Remote Sensing of Environment, 166, 262–270.
https://doi.org/10.1016/j.rse.2015.05.016
Ghaemi, Z., Farnaghi, M., & Alimohammadi, A. (2016). An Online Approach for Spatio-Temporal Prediction of Air Pollution in Tehran using Support Vector Machine.
Engineering Journal of Geospatial Information Technology, 3(4), 43-63.[In Persian]
http://jgit.kntu.ac.ir/article-1-305-en.html
Greff, K., Srivastava, R. K., Koutník, J., Steunebrink, B. R., & Schmidhuber, J. (2016). LSTM: A search space odyssey.
IEEE Transactions on Neural Networks and Learning Systems, 28(10), 2222-2232.
https://doi.org/10.1109/TNNLS.2016.2582924
Gulliver, J., Morley, D., Dunster, C., McCrea, A., van Nunen, E., Tsai, M. Y., ... & Kelly, F. J. (2018). Land use regression models for the oxidative potential of fine particles (PM
2.5) in five European areas.
Environmental Research, 160, 247-255.
https://doi.org/10.1016/j.envres.2017.10.002
Guo, Y., Tang, Q., Gong, D. Y., & Zhang, Z. (2017). Estimating ground-level PM
2.5 concentrations in Beijing using a satellite-based geographically and temporally weighted regression model.
Remote Sensing of Environment, 198, 140-149.
https://doi.org/10.1016/j.rse.2017.06.001
Han, W., & Tong, L. (2019). Satellite-based estimation of daily ground-level PM
2.5 concentrations over urban agglomeration of Chengdu Plain.
Atmosphere, 10(5), 245.
https://doi.org/10.3390/atmos10050245
Han, Z., Zhao, J., Leung, H., Ma, K. F., & Wang, W. (2019). A review of deep learning models for time series prediction.
IEEE Sensors Journal, 21(6), 7833-7848.
https://doi.org/10.1109/JSEN.2019.2923982
He, Q., & Huang, B. (2018). Satellite-based high-resolution PM
2.5 estimation over the Beijing-Tianjin-Hebei region of China using an improved geographically and temporally weighted regression model.
Environmental Pollution, 236, 1027-1037.
https://doi.org/10.1016/j.envpol.2018.01.053
Hsu, N. C., Tsay, S. C., King, M. D., & Herman, J. R. (2004). Aerosol properties over bright-reflecting source regions.
IEEE Transactions on Geoscience and Remote Sensing, 42(3), 557-569.
https://doi.org/10.1109/tgrs.2004.824067
Hu, X., Waller, L. A., Al‐Hamdan, M. Z., Crosson, W. L., Estes Jr, M. G., Estes, S. M., … & Liu, Y. (2013). Estimating ground-level PM
2.5 concentrations in the southeastern U.S. using geographically weighted regression.
Environmental Research, 121, 1–10.
https://doi.org/10.1016/j.envres.2012.11.003
Hu, Z., Liebens, J., & Rao, K. R. (2011). Merging satellite measurement with ground-based air quality monitoring data to assess health effects of fine particulate matter pollution.
In Geospatial Analysis of Environmental Health (pp. 395-409). Dordrecht: Springer Netherlands.
https://doi.org/10.1007/978-94-007-0329-2_20
Huang, K., Bi, J., Meng, X., Geng, G., Lyapustin, A., Lane, K. J., … & Liu, Y. (2019). Estimating daily PM
2.5 concentrations in New York City at the neighborhood-scale: Implications for integrating non-regulatory measurements.
Science of the Total Environment, 697, 134094.
https://doi.org/10.1016/j.scitotenv.2019.134094
Izah, S. C., Iyiola, A. O., Yarkwan, B., & Richard, G. (2023). Impact of air quality as a component of climate change on biodiversity-based ecosystem services. In
Visualization techniques for climate change with machine learning and artificial intelligence, 123-148.
https://doi.org/10.1016/B978-0-323-99714-0.00005-4
Jia, N., Li, Y., Chen, R., & Yang, H. (2023). A review of global PM
2.5 exposure research trends from 1992 to 2022.
Sustainability, 15(13), 10509.
https://doi.org/10.3390/su151310509
Jiang, T., Chen, B., Nie, Z., Ren, Z., Xu, B., & Tang, S. (2021). Estimation of hourly full-coverage PM
2.5 concentrations at 1-km resolution in China using a two-stage random forest model.
Atmospheric Research, 248, 105146.
https://doi.org/10.1016/j.atmosres.2020.105146
Karimian, H., Li, Q., Wu, C., Qi, Y., Mo, Y., Chen, G., ... & Sachdeva, S. (2019). Evaluation of different machine learning approaches to forecasting PM
2.5 mass concentrations.
Aerosol and Air Quality Research, 19(6), 1400-1410.
https://doi.org/10.4209/aaqr.2018.12.0450
Kaufman, Y. J., Wald, A. E., Remer, L. A., Gao, B. C., Li, R. R., & Flynn, L. (1997). The MODIS 2.1-/spl mu/m channel-correlation with visible reflectance for use in remote sensing of aerosol.
IEEE transactions on Geoscience and Remote Sensing, 35(5), 1286-1298.
https://doi.org/10.1109/36.628795
Kelly, F. J., & Fussell, J. C. (2012). Size, source and chemical composition as determinants of toxicity attributable to ambient particulate matter.
Atmospheric Environment, 60, 504-526.
https://doi.org/10.1016/j.atmosenv.2012.06.039
Koelemeijer, R. B. A., Homan, C. D., & Matthijsen, J. (2006). Comparison of spatial and temporal variations of aerosol optical thickness and particulate matter over Europe.
Atmospheric Environment, 40(27), 5304-5315.
https://doi.org/10.1016/j.atmosenv.2006.04.044
Kong, L., Xin, J., Zhang, W., & Wang, Y. (2016). The empirical correlations between PM
2.5, PM
10 and AOD in the Beijing metropolitan region and the PM
2.5, PM
10 distributions retrieved by MODIS.
Environmental Pollution, 216, 350-360.
https://doi.org/10.1016/j.envpol.2016.05.085
Kuremoto, T., Kimura, S., Kobayashi, K., & Obayashi, M. (2014). Time series forecasting using a deep belief network with restricted Boltzmann machines.
Neurocomputing, 137, 47-56.
https://doi.org/10.1016/j.neucom.2013.03.047
Lai, X., Li, H., & Pan, Y. (2021). A combined model based on feature selection and support vector machine for PM2. 5 prediction.
Journal of Intelligent & Fuzzy Systems, 40(5), 10099-10113.
https://doi.org/10.3233/JIFS-202812
Lee, H. J., Coull, B. A., Bell, M. L., & Koutrakis, P. (2012). Use of satellite-based aerosol optical depth and spatial clustering to predict ambient PM
2.5 concentrations.
Environmental Research, 118, 8-15.
https://doi.org/10.1016/j.envres.2012.06.011
Lee, H. J., Liu, Y., Coull, B. A., Schwartz, J., & Koutrakis, P. (2011). A novel calibration approach of MODIS AOD data to predict PM
2.5 concentrations.
Atmospheric Chemistry and Physics, 11(15), 7991-8002.
https://doi.org/10.5194/acp-11-7991-2011
Lee, J. H., Wu, C. F., Hoek, G., de Hoogh, K., Beelen, R., Brunekreef, B., & Chan, C. C. (2015). LUR models for particulate matters in the Taipei metropolis with high densities of roads and strong activities of industry, commerce and construction.
Science of the Total Environment, 514, 178-184.
https://doi.org/10.1016/j.scitotenv.2015.01.091
Li, H., Yu, Y., Huang, Z., Sun, S., & Jia, X. (2023). A multi-step ahead point-interval forecasting system for hourly PM
2.5 concentrations based on multivariate decomposition and kernel density estimation.
Expert Systems with Applications, 226, 120140.
https://doi.org/10.1016/j.eswa.2023.120140
Li, L., Zhang, J., Meng, X., Fang, Y., Ge, Y., Wang, J., ... & Kan, H. (2018a). Estimation of PM
2.5 concentrations at a high spatiotemporal resolution using constrained mixed-effect bagging models with MAIAC aerosol optical depth.
Remote Sensing of Environment, 217, 573-586.
https://doi.org/10.1016/j.rse.2018.09.001
Li, X., Peng, L., Hu, Y., Shao, J., & Chi, T. (2016). Deep learning architecture for air quality predictions.
Environmental Science and Pollution Research, 23, 22408-22417.
https://doi.org/10.1007/s11356-016-7812-9
Li, X., Peng, L., Yao, X., Cui, S., Hu, Y., You, C., & Chi, T. (2017). Long short-term memory neural network for air pollutant concentration predictions: Method development and evaluation.
Environmental Pollution, 231, 997-1004.
https://doi.org/10.1016/j.envpol.2017.08.114
Liu, J., Weng, F., Li, Z., & Cribb, M. C. (2019). Hourly PM
2.5 estimates from a geostationary satellite based on an ensemble learning algorithm and their spatiotemporal patterns over central east China.
Remote Sensing, 11(18), 2120.
https://doi.org/10.3390/rs11182120
Liu, Y., Franklin, M., Kahn, R., & Koutrakis, P. (2007). Using aerosol optical thickness to predict ground-level PM
2.5 concentrations in the St. Louis area: A comparison between MISR and MODIS.
Remote Sensing of Environment, 107(1-2), 33-44.
https://doi.org/10.1016/j.rse.2006.05.022
Liu, Y., Paciorek, C. J., & Koutrakis, P. (2009). Estimating regional spatial and temporal variability of PM
2.5 concentrations using satellite data, meteorology, and land use information.
Environmental Health Perspectives, 117(6), 886-892.
https://doi.org/10.1289/ehp.0800123
Liu, Y., Sarnat, J. A., Kilaru, V., Jacob, D. J., & Koutrakis, P. (2005). Estimating ground-level PM2. 5 in the eastern United States using satellite remote sensing.
Environmental Science & Technology, 39(9), 3269-3278.
https://doi.org/10.1021/es049352m
Lu, J., Li, B., Li, H., & Al-Barakani, A. (2021). Expansion of city scale, traffic modes, traffic congestion, and air pollution.
Cities, 108, 102974.
https://doi.org/10.1016/j.cities.2020.102974
Lv, Y., Duan, Y., Kang, W., Li, Z., & Wang, F. Y. (2014). Traffic flow prediction with big data: A deep learning approach.
IEEE Transactions on Intelligent Transportation Systems, 16(2), 865-873.
https://doi.org/10.1109/TITS.2014.2345663
Mao, L., Qiu, Y., Kusano, C., & Xu, X. (2012). Predicting regional space–time variation of PM
2.5 with land-use regression model and MODIS data.
Environmental Science and Pollution Research, 19, 128-138.
https://doi.org/10.1007/s11356-011-0546-9
Masroor, K., Fanaei, F., Yousefi, S., Raeesi, M., Abbaslou, H., Shahsavani, A., & Hadei, M. (2020). Spatial modelling of PM
2.5 concentrations in Tehran using Kriging and inverse distance weighting (IDW) methods.
Journal of Air Pollution and Health, 5(2), 89-96.
https://doi.org/10.18502/japh.v5i2.4237
Mellit, A., & Pavan, A. M. (2010). A 24-h forecast of solar irradiance using artificial neural network: Application for performance prediction of a grid-connected PV plant at Trieste, Italy.
Solar Energy, 84(5), 807-821.
https://doi.org/10.1016/j.solener.2010.02.006
Meng, X., Fu, Q., Ma, Z., Chen, L., Zou, B., Zhang, Y., … & Liu, Y. (2016). Estimating ground-level PM10 in a Chinese city by combining satellite data, meteorological information and a land use regression model.
Environmental Pollution, 208, 177-184.
https://doi.org/10.1016/j.envpol.2015.09.042
Meyer, H., Kühnlein, M., Appelhans, T., & Nauss, T. (2016). Comparison of four machine learning algorithms for their applicability in satellite-based optical rainfall retrievals.
Atmospheric Research, 169, 424-433.
https://doi.org/10.1016/j.atmosres.2015.09.021
Miri, M., Ghassoun, Y., Dovlatabadi, A., Ebrahimnejad, A., & Löwner, M. O. (2019). Estimate annual and seasonal PM
1, PM
2.5 and PM
10 concentrations using land use regression model.
Ecotoxicology and Environmental Safety, 174, 137-145.
https://doi.org/10.1016/j.ecoenv.2019.02.070
Mishra, D., & Goyal, P. (2015). Development of artificial intelligence based NO
2 forecasting models at Taj Mahal, Agra.
Atmospheric Pollution Research, 6(1), 99-106.
https://doi.org/10.5094/APR.2015.012
Mohammadi, F., Teiri, H., Hajizadeh, Y., Abdolahnejad, A., & Ebrahimi, A. (2024). Prediction of atmospheric PM
2.5 level by machine learning techniques in Isfahan, Iran.
Scientific Reports, 14(1), 2109.
https://doi.org/10.1038/s41598-024-52617-z
Moher, D., Liberati, A., Tetzlaff, J., Altman, D. G., & PRISMA Group, T. (2009). Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement.
Annals of Internal Medicine, 151(4), 264-269.
https://doi.org/10.7326/0003-4819-151-4-200908180-00135
Moore, D. K., Jerrett, M., Mack, W. J., & Künzli, N. (2007). A land use regression model for predicting ambient fine particulate matter across Los Angeles, CA.
Journal of Environmental Monitoring, 9(3), 246-252.
https://doi.org/10.1039/B615795E
Moryani, H. T., Kong, S., Du, J., & Bao, J. (2020). Health risk assessment of heavy metals accumulated on PM
2.5 fractioned road dust from two cities of Pakistan.
International Journal of Environmental Research and Public Health, 17(19), 7124.
https://doi.org/10.3390/ijerph17197124
Nabavi, S. O., Haimberger, L., & Abbasi, E. (2019). Assessing PM
2.5 concentrations in Tehran, Iran, from space using MAIAC, deep blue, and dark target AOD and machine learning algorithms.
Atmospheric Pollution Research, 10(3), 889-903.
https://doi.org/10.1016/j.apr.2018.12.017
Obodoeze, F. C., Nwabueze, C. A., & Akaneme, S. A. (2021). Comparative Evaluation of Machine Learning Regression Algorithms for PM2.5 Monitoring. American Journal of Engineering Research, 10(12), 19-33.
Ong, B. T., Sugiura, K., & Zettsu, K. (2016). Dynamically pre-trained deep recurrent neural networks using environmental monitoring data for predicting PM
2.5.
Neural Computing and Applications, 27, 1553-1566.
https://doi.org/10.1007/s00521-015-1955-3
Osimobi, O. J., Yorkor, B., & Nwankwo, C. A. (2019). Evaluation of daily pollutant standard index and air quality index in a university campus in Nigeria using PM
10 and PM
2.5 particulate matter. Journal of Science,
Technology and Environment Informatics, 7(2), 517-532.
https://doi.org/10.18801/jstei.070219.54
Paciorek, C. J., Liu, Y., Moreno-Macias, H., & Kondragunta, S. (2008). Spatiotemporal associations between GOES aerosol optical depth retrievals and ground-level PM
2.5.
Environmental science & technology, 42(15), 5800-5806.
https://doi.org/10.1021/es703181j
Perrone, M. G., Gualtieri, M., Consonni, V., Ferrero, L., Sangiorgi, G., Longhin, E., ... & Camatini, M. (2013). Particle size, chemical composition, seasons of the year and urban, rural or remote site origins as determinants of biological effects of particulate matter on pulmonary cells.
Environmental Pollution, 176, 215-227.
https://doi.org/10.1016/j.envpol.2013.01.012
Qi, Y., Li, Q., Karimian, H., & Liu, D. (2019). A hybrid model for spatiotemporal forecasting of PM
2.5 based on graph convolutional neural network and long short-term memory.
Science of the Total Environment, 664, 1-10.
https://doi.org/10.1016/j.scitotenv.2019.01.333
Quan, T., Liu, X., & Liu, Q. (2010). Weighted least squares support vector machine local region method for nonlinear time series prediction.
Applied Soft Computing, 10(2), 562-566.
https://doi.org/10.1016/j.asoc.2009.08.025
Reddy, V., Yedavalli, P., Mohanty, S., & Nakhat, U. (2018). Deep air: forecasting air pollution in Beijing, China. Environmental Science, 1564.
Ren, Y., Zhang, Y., & Fan, S. (2024). PM
2.5 Inversion Based on XGBoost And LightGBM Integrated Models.
Proceedings of the 4th International Conference on Environment Resources and Energy Engineering (ICEREE 2024).
https://doi.org/10.1051/e3sconf/202452002023
Ross, Z., Jerrett, M., Ito, K., Tempalski, B., & Thurston, G. D. (2007). A land use regression for predicting fine particulate matter concentrations in the New York City region.
Atmospheric Environment, 41(11), 2255-2269.
https://doi.org/10.1016/j.atmosenv.2006.11.012
Saeed, S., Hussain, L., Awan, I. A., & Idris, A. (2017). Comparative analysis of different statistical methods for prediction of PM
2.5 and PM
10 concentrations in advance for several hours. IJCSNS International
Journal of Computer Science and Network Security, 17(11), 45-52.
http://ijcsns.org/07_book/html/201711/201711006.html
Sapankevych, N. I., & Sankar, R. (2009). Time series prediction using support vector machines: a survey.
IEEE Computational Intelligence Magazine, 4(2), 24-38.
https://doi.org/10.1109/MCI.2009.932254
Shi, Y., Ho, H. C., Xu, Y., & Ng, E. (2018). Improving satellite aerosol optical depth-PM
2.5 correlations using land use regression with microscale geographic predictors in a high-density urban context.
Atmospheric Environment, 190, 23-34.
https://doi.org/10.1016/j.atmosenv.2018.07.021
Shogrkhodaei, S. Z., Razavi-Termeh, S. V., & Fathnia, A. (2021). Spatio-temporal modeling of PM
2.5 risk mapping using three machine learning algorithms.
Environmental Pollution, 289, 117859.
https://doi.org/10.1016/j.envpol.2021.117859
Song, Y., Qin, S., Qu, J., & Liu, F. (2015). The forecasting research of early warning systems for atmospheric pollutants: A case in Yangtze River Delta region.
Atmospheric Environment, 118, 58-69.
https://doi.org/10.1016/j.atmosenv.2015.06.032
Stern, R., Builtjes, P. J. H., Schaap, M., Timmermans, R., Vautard, R., Hodzic, A., … & Kerschbaumer, A. (2008). A model inter-comparison study focussing on episodes with elevated PM10 concentrations.
Atmospheric Environment, 42(19), 4567–4588.
https://doi.org/10.1016/j.atmosenv.2008.01.068
Su, J. G., Jerrett, M., Beckerman, B., Wilhelm, M., Ghosh, J. K., & Ritz, B. (2009). Predicting traffic-related air pollution in Los Angeles using a distance decay regression selection strategy.
Environmental Research, 109(6), 657-670.
https://doi.org/10.1016/j.envres.2009.06.001
Taheri Shahraiyni, H., & Sodoudi, S. (2016). Statistical modeling approaches for PM10 prediction in urban areas; A review of 21st-century studies.
Atmosphere, 7(2), 15.
https://doi.org/10.3390/atmos7020015
Van Donkelaar, A., Martin, R. V., Brauer, M., Kahn, R., Levy, R., Verduzco, C., & Villeneuve, P. J. (2010). Global estimates of ambient fine particulate matter concentrations from satellite-based aerosol optical depth: development and application.
Environmental Health Perspectives, 118(6), 847-855.
https://doi.org/10.1289/ehp.0901623
Vapnik, V. (2013). The nature of statistical learning theory. Springer science & business media. New York: Springer.
Vicedo-Cabrera, A. M., Biggeri, A., Grisotto, L., Barbone, F., & Catelan, D. (2013). A Bayesian kriging model for estimating residential exposure to air pollution of children living in a high-risk area in Italy.
Geospatial Health, 8(1), 87-95.
https://doi.org/10.4081/gh.2013.57
Wang, J., & Christopher, S. A. (2003). Intercomparison between satellite‐derived aerosol optical thickness and PM
2.5 mass: Implications for air quality studies.
Geophysical Research Letters, 30(21).
https://doi.org/10.1029/2003GL018174
Wang, L., Zeng, Y., & Chen, T. (2015). Back propagation neural network with adaptive differential evolution algorithm for time series forecasting.
Expert Systems with Applications, 42(2), 855-863.
https://doi.org/10.1016/j.eswa.2014.08.018
West, J. J., Cohen, A., Dentener, F., Brunekreef, B., Zhu, T., Armstrong, B., ... & Wiedinmyer, C. (2016). What we breathe impacts our health: improving understanding of the link between air pollution and health.
Environmental Science & Technology, 50(10), 4895–4904.
https://doi.org/10.1021/acs.est.5b03827
Wu, C. D., Chen, Y. C., Pan, W. C., Zeng, Y. T., Chen, M. J., Guo, Y. L., & Lung, S. C. C. (2017). Land-use regression with long-term satellite-based greenness index and culture-specific sources to model PM
2.5 spatial-temporal variability.
Environmental Pollution, 224, 148-157.
https://doi.org/10.1016/j.envpol.2017.01.074
Xiao, Q., Wang, Y., Chang, H. H., Meng, X., Geng, G., Lyapustin, A., & Liu, Y. (2017). Full-coverage high-resolution daily PM2. 5 estimation using MAIAC AOD in the Yangtze River Delta of China.
Remote Sensing of Environment, 199, 437-446.
https://doi.org/10.1016/j.rse.2017.07.023
Xu, Q., Chen, X., Yang, S., Tang, L., & Dong, J. (2021). Spatiotemporal relationship between Himawari-8 hourly columnar aerosol optical depth (AOD) and ground-level PM
2.5 mass concentration in mainland China.
Science of the Total Environment, 765, 144241.
https://doi.org/10.1016/j.scitotenv.2020.144241
Xu, Y., Ho, H. C., Wong, M. S., Deng, C., Shi, Y., Chan, T. C., & Knudby, A. (2018). Evaluation of machine learning techniques with multiple remote sensing datasets in estimating monthly concentrations of ground-level PM
2.5.
Environmental Pollution, 242, 1417-1426.
https://doi.org/10.1016/j.envpol.2018.08.029
Xue, Q., Tian, Y., Liu, X., Wang, X., Huang, B., Zhu, H., & Feng, Y. (2022). Potential risks of PM
2.5-bound polycyclic aromatic hydrocarbons and heavy metals from inland and marine directions for a marine background site in North China.
Toxics, 10(1), 32.
https://doi.org/10.3390/toxics10010032
Xue, W., Zhang, J., Zhong, C., Ji, D., & Huang, W. (2020). Satellite-derived spatiotemporal PM
2.5 concentrations and variations from 2006 to 2017 in China.
Science of the Total Environment, 712, 134577.
https://doi.org/10.1016/j.scitotenv.2019.134577
Yamins, D. L., & DiCarlo, J. J. (2016). Using goal-driven deep learning models to understand sensory cortex.
Nature Neuroscience, 19(3), 356-365.
https://doi.org/10.1038/nn.4244
Yan, X., Zang, Z., Luo, N., Jiang, Y., & Li, Z. (2020). New interpretable deep learning model to monitor real-time PM
2.5 concentrations from satellite data.
Environment International, 144, 106060.
https://doi.org/10.1016/j.envint.2020.106060
Yang, Q., Yuan, Q., Yue, L., Li, T., Shen, H., & Zhang, L. (2019). The relationships between PM
2.5 and aerosol optical depth (AOD) in mainland China: About and behind the spatio-temporal variations.
Environmental Pollution, 248, 526-535.
https://doi.org/10.1016/j.envpol.2019.02.071
Yang, Y., Wang, Z., Cao, C., Xu, M., Yang, X., Wang, K., ... & Shi, Z. (2024). Estimation of PM
2.5 Concentration across China Based on Multi-Source Remote Sensing Data and Machine Learning Methods.
Remote Sensing, 16(3), 467.
https://doi.org/10.3390/rs16030467
Yi, L., Mengfan, T., Kun, Y., Yu, Z., Xiaolu, Z., Miao, Z., & Yan, S. (2019). Research on PM
2.5 estimation and prediction method and changing characteristics analysis under long temporal and large spatial scale-A case study in China typical regions.
Science of the Total Environment, 696, 133983.
https://doi.org/10.1016/j.scitotenv.2019.133983
Zamani Joharestani, M., Cao, C., Ni, X., Bashir, B., & Talebiesfandarani, S. (2019). PM
2.5 prediction based on random forest, XGBoost, and deep learning using multisource remote sensing data.
Atmosphere, 10(7), 373.
https://doi.org/10.3390/atmos10070373
Zhang, J., Zheng, Y., & Qi, D. (2017). Deep Spatio-Temporal Residual Networks for Citywide Crowd Flows Prediction.
Proceedings of the AAAI Conference on Artificial Intelligence,
31(1).
https://doi.org/10.1609/aaai.v31i1.10735
Zhang, T., He, W., Zheng, H., Cui, Y., Song, H., & Fu, S. (2021). Satellite-based ground PM
2.5 estimation using a gradient boosting decision tree.
Chemosphere, 268, 128801.
https://doi.org/10.1016/j.chemosphere.2020.128801
Zhang, X., Chu, Y., Wang, Y., & Zhang, K. (2018). Predicting daily PM
2.5 concentrations in Texas using high-resolution satellite aerosol optical depth.
Science of the Total Environment, 631, 904-911.
https://doi.org/10.1016/j.scitotenv.2018.02.255
Zhou, Y., Chang, F. J., Chang, L. C., Kao, I. F., Wang, Y. S., & Kang, C. C. (2019). Multi-output support vector machine for regional multi-step-ahead PM
2.5 forecasting.
Science of the Total Environment, 651, 230-240.
https://doi.org/10.1016/j.scitotenv.2018.09.111
Zou, B., Fang, X., Feng, H., & Zhou, X. (2021). Simplicity versus accuracy for estimation of the PM
2.5 concentration: A comparison between LUR and GWR methods across time scales.
Journal of Spatial Science, 66(2), 279-297.
https://doi.org/10.1080/14498596.2019.1624203
Zuo, X., Guo, H., Shi, S., & Zhang, X. (2020). Comparison of six machine learning methods for estimating PM
2.5 concentration using the Himawari-8 aerosol optical depth.
Journal of the Indian Society of Remote Sensing, 48(9), 1277-1287.
https://doi.org/10.1007/s12524-020-01154-z
Send comment about this article