The Evaluation of Flood Zone and Hydrograph using ERA5 Precipitation Data (Case Study: Zoshk Basin)

Document Type : Research Article

Authors

1 MSc in Water Science and Engineering, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran

2 Associate Professor, Department of Water Science and Engineering, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran

3 PhD in Water Science and Engineering, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran

Abstract

Precipitation is one of the main causes of floods which due to the improper dispersion of rain gauge stations and the newly established ones in most basins of the country, the use of the precipitation data faces serious challenges. Remote-sensing method can be used in such cases. In this study, the reanalysis rainfall data of ERA5 for Kashafrood catchment were evaluated in daily and monthly timescales and then its streamflow hydrograph was evaluated using rainfall data of Zoshk station and Zoshk watershed parameters in the HEC-HMS software. The reanalysis rainfall data of ERA5 showed underestimation and overestimation and also had better accuracy in monthly timescale (R = [0.87-0.99]) than daily timescale (R = [0.89-0.62]) and its flow hydrograph compared to the observational hydrograph was more satisfactory (NSE = 0.49 and PBias = -26.46). Flood zone of reanalysis precipitation data of ERA5 in relation to the reference flood zone was -0.07, which was due to the underestimation of precipitation data and the subsequent underestimation of its hydrograph peak flow in the HEC-HMS model. Future studies can be used to evaluate the flood zone resulting from precipitation data of various products in HEC-RAS model.

Graphical Abstract

The Evaluation of Flood Zone and Hydrograph using ERA5 Precipitation Data (Case Study: Zoshk Basin)

Keywords


جبلی‌فرد، س؛ احمدی، ح؛ 1395. راهنمای کاربران سیستم تحلیل رودخانه HEC-RAS. جهاد دانشگاهی واحد صنعتی امیرکبیر: https://www.gisoom.com/book/1951120/.
خضریان‌نژاد، ن؛ حجام، س؛ میرزایی، امشکواتی، ا؛ 1391. پیش‏بینی رواناب حوضه آبریز تیره با استفاده از پیش‏بینی کمی بارش خروجی مدل WRF. نشریه پژوهش‏های اقلیم‏شناسی. 3.
عرفانی‌رحمت‌نیا، ع؛ باباییان، انتظاری، ع؛ 1397. کارآیی داده‏های بازکاوی ERA-Interim در شبیه‌سازی بارش مشاهداتی ایستگاه‌های هواشناسی خراسان رضوی. دومین کنفرانس ملی آب و هواشناسی. دانشگاه فردوسی مشهد. https://civilica.com/doc/780994.
عزیزی‌مبصر، ج؛ رسول‌زاده، ع؛ رحمتی، ا؛ شایقی، اباختر، آ؛ 1399. ارزیابی عملکرد داده‏های بازتحلیل‏شده Era-5 در تخمین بارش روزانه و ماهانه در استان اردبیل. مجله تحقیقات آب و خاک ایران. 51. 2937-2951. https://www.sid.ir/paper/402729/fa.
کریمی، م؛ حیدری، سرفعتی، س؛ 1400. روند تغییرات مولفه‏های جوی چرخه آب (بارش و آب قابل بارش) در حوضه‏های آبریز ایران. نشریه تحلیل فضایی مخاطرات محیطی .8. 33-54.
گرجی‌زاده، ع؛ آخوندعلی، عم؛ شهبازی، ع؛ مریدی، ع؛ 1398. مقایسه و ارزیابی بارش برآورد شده توسط مدل‌های ERA-Interim، PERSIANN-CDR و CHIRPS در بالادست سد مارون. مجله تحقیقات منابع آب ایران.
 
Amjad M, Yilmaz M, Yucel IYilmaz K., 2020. Performance Evaluation of Satellite- and Model-based Precipitation Products over Varying Climate and Complex Topography. Journal of Hydrology 584: 124707. https://10.1016/j.jhydrol.2020.124707.
Belabid N, Zhao F, Brocca L, Huang YTan Y., 2019. Near-Real-Time Flood Forecasting Based on Satellite Precipitation Products. Remote Sensing 11: 252. https:// doi.org/ 10.3390/ rs11030252.
Dasgupta A, Thakur PGupta P., 2020. Potential of SAR-Derived Flood Maps for Hydrodynamic Model Calibration in Data Scarce Regions. Journal of Hydrologic Engineering https://doi.org/10.1061/(ASCE)HE.1943-5584.0001988.
Harrigan S, Zsoter E, Alfieri L, Prudhomme C, Salamon P, Wetterhall F, Barnard C, Cloke HPappenberger F., 2020. GloFAS-ERA5 operational global river discharge reanalysis 1979–present. Earth Syst. Sci. Data 12: 2043-2060. https://doi.org/10.5194/essd-12-2043-2020.
Hwang S-O, Park JKim HM., 2019. Effect of hydrometeor species on very-short-range simulations of precipitation using ERA5. Atmospheric Research 218: 245-256. https://doi.org/10.1016/j.atmosres.2018.12.008.
Izadi N, Ghasemi E, Ranjbar A, Shamsipour A, Fattahi EHabibi M., 2021. Evaluation of ERA5 Precipitation Accuracy Based on Various Time Scales over Iran during 2000–2018. Water 13: 2538. https://10.3390/w13182538.
Lu L, Yuan W, Su C, Gao Q, Yan DWu Z., 2022. Study on the early warning and forecasting of flash floods in small watersheds based on the rainfall pattern of risk probability combination. Stochastic Environmental Research and Risk Assessment 36: 1-16. https://doi.org/ 10.1007/ s00477-021-02059-0.
Moriasi D, Gitau M, Pai NDaggupati P., 2015. Hydrologic and Water Quality Models: Performance Measures and Evaluation Criteria. Transactions of the ASABE (American Society of Agricultural and Biological Engineers) 58: 1763-1785. https:/ /doi.org/ 10.13031/trans.58.10715.
Sabah P, Junaid Nazir K, Rohitashw KSaqib Parvaze A., 2021. Flood Forecasting in the Sparsely Gauged Jhelum River Basin of Greater Himalayas Using Integrated Hydrological and Hydraulic Modelling Approach. Climate Dynamics https://10.21203/rs.3.rs-461873/v1.
Shayeghi A, Azizian A, Brocca L., 2019. The Reliability of Reanalysis and Remotely Sensed Precipitation Products for Hydrological Simulation over the Sefidrood River Basin in Iran. Hydrological Sciences Journal/Journal des Sciences Hydrologiques https:// 10.1080/ 02626667. 2019.1691217.
Singh T, Saha U, Prasad VSGupta MD., 2021. Assessment of newly-developed high resolution reanalyses (IMDAA, NGFS and ERA5) against rainfall observations for Indian region. Atmospheric Research 259: 105679. https://doi.org/10.1016/j.atmosres.2021.105679.
Trinh M. Molkenthin F., 2021. Flood hazard mapping for data-scarce and ungauged coastal river basins using advanced hydrodynamic models, high temporal-spatial resolution remote sensing precipitation data, and satellite imageries. Natural Hazards 109: https:// doi.org/ 10.1007/s11069-021-04843-1.
USACE. 2021. Hydrologic Modeling System HEC-HMS,User’s Manual, Technical Reference Manual. Journal, 676.
Voropay N, Ryazanova ADyukarev E., 2021. High-resolution bias-corrected precipitation data over South Siberia, Russia. Atmospheric Research 254: 105528. https:// doi.org/ 10.1016/ j.atmosres.2021.105528.
Yang Y, Pan M, Lin P, Beck H, Zeng Z, Yamazaki D, David C, Lu H, Yang K, Hong YWood E. 2021. Global Reach-Level 3-Hourly River Flood Reanalysis (1980–2019). Bulletin of the American Meteorological Society 102: 1-49. https://doi.org/10.1175/BAMS-D-20-0057.1.
Yin J, Guo S, gu L, Zeng Z, Liu D, Chen J, Shen Y, Xu C-Y., 2020. Blending multi-satellite, atmospheric reanalysis and gauge precipitation products to facilitate hydrological modelling. Journal of Hydrology 593: https://10.1016/j.jhydrol.2020.125878.
Yuan X, Yang K, Lu H, He J, Sun JWang Y., 2021. Characterizing the features of precipitation for the Tibetan Plateau among four gridded datasets: Detection accuracy and spatio-temporal variabilities. Atmospheric Research 264: 105875. https:// doi.org/ 10.1016/ j.atmosres. 2021.105875.
 
 
CAPTCHA Image