Abija, F. A., Nwosu, J. I., Ifedotun, A. I., & Osadebe, C. C. (2019). Landslide susceptibility assessment of Calabar, Nigeria using Geotechnical.
Remote Sensing and Multi-Criteria Decision Analysis: Im-plications for Urban Planning and Development, 774-788.
http://dx.doi.org/10.25177/JESES.4.6.RA.617
Alqadhi, S., Mallick, J., Hang, H. T., Al Asmari, A. F. S., & Kumari, R. (2024). Evaluating the influence of road construction on landslide susceptibility in Saudi Arabia’s mountainous terrain: a Bayesian-optimised deep learning approach with attention mechanism and sensitivity analysis.
Environmental Science and Pollution Research, 31(2), 3169-3194.
https://doi.org/10.1007/s11356-023-31352-4
Asghari Saraskanroud, P., & Pirizi, A. (2023). Comparative evaluation of WLC, OWA, VIKOR and MABAC multi-criteria decision making algorithms in landslide risk zoning, case study: Givi Chai basin of Ardabil province.
Natural Geography Research, 54(1), 65-94. [In Persian]
https://doi.org/10.22059/jphgr.2022.333658.1007656
Demuth, H. B., & Beale, M. H. (1992). Neural Network Toolbox User's Guide. Mathworks, Incorporated.
Entezari, M., & Kordavani, M. (2022). Landslide hazard zoning using GIS-based methods and radar data (Case study: Fereydoon Shahr).
Journal of Natural Environmental Hazards,
11(33), 177-196. [In Persian]
https://doi.org/10.22111/jneh.2022.38660.1810
Esfandiary Darabad, F., Rahimi, M., Navidfar, A., & Arsalan, M. (2020). Assessment of landslide sensitivity by neural network method and Vector machine algorithm (Case study: Heyran Road-Ardebil province).
Quantitative Geomorphological Research,
9(3), 18-33. [In Persian]
https://www.geomorphologyjournal.ir/article_122210.html
Ghateh, S., Malekzadeh, T., & Pourghasemi, E. (2024). Landslide risk zoning using satellite images (case study: Balharud watershed, Garmi city).
Geography and Human Relationships,
6(3), 145-164. [In Persian]
https://doi.org/10.22034/gahr.2023.394638.1860
Hong, C., Burney, J. A., Pongratz, J., Nabel, J. E., Mueller, N. D., Jackson, R. B., & Davis, S. J. (2021). Global and regional drivers of land-use emissions in 1961–2017.
Nature,
589(7843), 554-561.
https://doi.org/10.1038/s41586-020-03138-y
Jahandar, S., Aghagolzadeh, A., & Kazemi Tabar, S. J. (2018). Blind recognition of block codes in the presence of high noise using statistical methods. Modern Defense Science and Technology (Non-active defense science and technology), 10(4), 373-381. [In Persian]
Jouybari Moghaddam, Y., & Rostami, S. Q. (2018). Fusion of Markov Chain and SAX Method for Drought Probability Analysis (Case Study: Eastern District of Isfahan, Iran).
Environmental Management Hazards,
5(3), 295-311. [In Persian]
https://doi.org/10.22059/jhsci.2018.267316.414
Liu, X., Shao, S., & Shao, S. (2024). Landslide susceptibility zonation using the analytical hierarchy process (AHP) in the Great Xi’an Region, China.
Scientific Reports,
14(1), 2941.
https://doi.org/10.1038/s41598-024-53630-y
Mir, R. A., Habib, Z., Kumar, A., & Bhat, N. A. (2024). Landslide susceptibility mapping and risk assessment using total estimated susceptibility values along NH44 in Jammu and Kashmir, Western Himalaya.
Natural Hazards,
120(5), 4257-4296.
https://doi.org/10.1007/s11069-023-06363-6
Mirzai, F., Momeni, A. A., & Abdi, Y. (2024). Landslide hazard zonation along Khorramabad-Zal Highway in Lorestan province using analytical hierarchy process (AHP).
New Findings in Applied Geology,
18(36), 264-282. [In Persian]
https://doi.org/10.22084/nfag.2024.28365.1582
Mohammadi, N., & Sasanpour, F. (2021). Landslide and debris flow risk analysis in Haraz and Lavasanat roads.
Water and Soil Management and Modelling,
1(4), 14-29. [In Persian]
https://doi.org/10.22098/mmws.2021.9138.1023
Mokhtari, M. (1993). Shirvan Astakhri landslide. Geographical Research Quarterly, 29, 117- 124. [In Persian]
Nasiri, S. (2008). A perspective on landslides in Iran, a case study of slope instability on Haraz National Base Road. [In Persian]
Raja, N. B., Çiçek, I., Türkoğlu, N., Aydin, O., & Kawasaki, A. (2017). Landslide susceptibility mapping of the Sera River Basin using logistic regression model.
Natural Hazards,
85, 1323-1346.
https://doi.org/10.1007/s11069-016-2591-7
Ranjithan, S., Eheart, J. W., & Garrett, J. H. (1995). Application of neural network in groundwater remediation under conditions of uncertainty. New Uncertainty Concepts in Hydrology and Water Resources, 133-140.
Rezaei Moghaddam, M. H., Mokhtari, D., & Samandar, N. (2021). Mass movements Modeling and Motion Sensitive Zone Management Using Statistical Algorithms in Ojan Chay Basin.
Geography and Development,
19(63), 147-174. [In Persian]
https://doi.org/10.22111/j10.22111.2021.6190
Schalkoff, R. J. (1997). Artificial Nneural Networks. McGraw-Hill Higher Education. New York.
Zhao, H., Tian, W. P., Li, J. C., & Ma, B. C. (2018). Hazard zoning of trunk highway slope disasters: a case study in northern Shaanxi, China.
Bulletin of Engineering Geology and the Environment, 77(4), 1355-1364.
https://doi.org/10.1007/s10064-017-1178-1
Send comment about this article