Tree Ring Based Precipitation Reconstruction of Northeast Iran Using Juniper Tree Chronology of Lain Region

Document Type : Research Article

Authors

1 Mazandaan Agricultural Sciences and Natural Resources University,Sari

2 University of Tehran

Abstract

1. Introduction
Long-term climatic data are a prerequisite for hydro-meteorological studies and understanding of past climate. Iran is mostly located in semi-arid to arid climate zones, so information on the natural long-term variability of the hydroclimate is of great relevance for land use planning, agriculture, and water supply of a growing population. However, the maximum length of recorded climate data in Iran is less than 60 years, measured at less than 50 synoptic meteorological stations. Therefore, knowledge of the climate history in the distant past requires reconstruction of climate variables from proxy data. Tree-ring data are an important and precisely dated proxy to reconstruct variations in hydroclimate, especially in climates where tree growth is mainly limited by moisture availability. Juniper trees due to high survivability and high sensitivity to weather conditions are suitable tree species for the reconstruction of past climate. The present study is the first effort to reconstruct local precipitation in the northeast region of Iran from tree-ring data of Juniperus polycarpus.
2. Study Area
The tree-ring sampling site is located in the Hezarmasjed heights (Lain region) of Khorasan Shomali Province, northeast of Iran (37 N; 59° 21 E) at an altitude of 2100 MSL. The climate of the region is cold and semi-arid. Climatic data are prepared from meteorological stations and global data networks (NCEP-NCAR) with resolution of 2.5*2.5 deg. with the common period of 1949-2000. In order to understand regional variation rainfall, the average precipitation of six points from NCEP-NCAR network was considered as regional precipitation data. The chronology of tree ring width is developed from 16 increments of Juniper trees. To remove the biological age trend in ring width of data, a double de-trending procedure was applied to all series by using the ARSTAN program.
3. Material and Methods
In this study, the influence of temperature, precipitation and PDSI on tree ring width of Juniperus trees based on station and global network data was investigated and annual precipitation of northeast of Iran was reconstructed using the Juniper chronology in the period 1845-2000. A simple linear regression was employed to reconstruct precipitation. The reconstructed results were compared with recorded data of four long-term stations and also their correspondence with historical famine reports and the reconstruction results from neighboring countries (east and west) was investigated.
4. Results and Discussion
The results showed that tree ring widths of Juniper trees have positive correlation with temperature of pre growth December and negative correlation with temperature of May, significantly. Also precipitation in all months of growth season has positive effect on tree growth and annual rainfall has the highest correlation with tree ring widths. So average rainfall of northeast Iran from six points of global network data was calculated and using Juniperus chronology was reconstructed in 1845-2000. Correlation coefficients of calibration and evaluation periods were significant (p

Keywords


ارسلانی، محسن؛ عزیزی، قاسم؛ خوش اخلاق، فرامرز؛ 1391. بازسازی تغییرات دمای حداکثر استان کرمانشاه با استفاده از حلقه‌های درختی. جغرافیا و مخاطرات محیطی. 1(1): 110-97.
بالاپور، شمس‌الدین؛ جلیلوند، حمید؛ رائینی، محمود؛ اسدپور، حمیده؛ 1389. رابطه حلقه‌های رویشی راش با برخی از متغیرهای اقلیمی در جنگل آموزشی-پژوهشی دانشکده منابع طبیعی ساری (دارابکلا). پژوهش‌های آبخیزداری. 88: 10-1.
پورطهماسی، کامبیز؛ پورسرتیپ، لادن؛ براونینگ، آخیم؛ پارساپژوه، داوود؛ 1388. ارزیابی رویش شعاعی درختان ارس (Juniperus plycarpos) و اوری (Quercus macranthera) در دو دامنه شمال و جنوب البرز در منطقه چهارباغ گرگان. نشریه جنگل و فرآورده‌های چوب، دانشکده منابع طبیعی دانشگاه تهران. 62(2): 169-159.
عزیزی، قاسم؛ ارسلانی، محسن؛ ارسلانی، عزت اله؛ صفایی راد، رضا؛ 1391. بازسازی دمای بیشینه بهار- تابستان در یال غربی زاگرس میانی با استفاده از یک گاه‌شناسی منطقه‌ای (۲۰۱۰-۱۷۵۰). جغرافیا و مخاطرات محیطی.1(4): 51-64.
نادی، مهدی؛ بذرافشان، جواد؛ پورطهماسی، کامبیز؛ نجفی هرسینی، فاطمهغ 1394. رابطه بین پهنای حلقه‌های سالانه درختان بلوط و شاخص‌های اقلیمی (منطقه‌ای و جهانی) در منطقه جوانرود کرمانشاه. نشریه پژوهش‌های حفاظت آب و خاک. 22(3): 71-57.
نادی، مهدی؛ خلیلی، علی؛ پورطهماسی، کامبیز؛ بذرافشان، جواد؛ 1392. مقایسه تکنیک‌های مختلف پهنه بندی داده‌های اقلیمی برای تعیین مهم‌ترین عامل‌های مؤثر بر رشد درختان ناحیه مرتفع چهارباغ گرگان. نشریه جنگل و فرآورده‌های چوب. 66 (1): 95-83.
نجفی هرسینی، فاطمه؛ پورطهماسی، کامبیز؛ کریمی، علی نقی؛ 1391. ارزیابی رویش شعاعی گونه مازو Quercus infectoria در جنگل‌های بلوط کرمانشاه با استفاده از دانش گاهشناسی درختی. نشریه جنگل و فرآورده‌های چوب. 65 (1): 129-119.
Arsalani, M., Azizi, G., & Khoshakhlagh, F., 2012. Reconstruction of maximum temperature variations in Kermanshah province using tree rings. Geography and environmental hazards, 1(1), 97-110.
Arsalani, M., Azizi, Gh., & Bräuning, A., 2014. Dendroclimatic reconstruction of May–June maximum temperatures in the central Zagros Mountains, western Iran. Int. J. Climatol, DOI: 10.1002/joc.3988.
Azizi, G., Arsalani, M., Arsalani, E., & Safai rad, R., 2013. Reconstruction of Spring-Summer Maximum Temperatures Based on a Regional Chronology (1750-2010) in the Western Ridge of Central Zagros, Iran. Geography and environmental hazards, 1(4), 51-64.
Azizi, Gh., Arsalani, M., & Bräuning, A., Moghimi, E., 2013. Precipitation variations in the central Zagros Mountains (Iran) since A.D. 1840 based on oak tree rings. Palaeogeography, Palaeoclimatology, Palaeoecology, 386, 96-103.
Balapour, S.h., Jalilvand, H., Raeini, M., & Asadpour, H., 2010. Relationship between tree rings of Beech (Fagus orientalis) with some climatic variables in experimental forest of Natural Resources Faculty (Darabcola). Watershed Management Research, 88, 1-10.
Bräuning, A., Grießinger, J., 2006. Late Holocene variations in monsoon intensity in the Tibetan-Himalayan region–Evidence from tree rings. Journal of the Geological Science of India, 68(3), 485–493.
Buckley, B.M., Palakit, K., Duangsathaporn, K et al., 2007. Decadal scale droughts over northwestern Thailand over the past 448 years: Links to the tropical pacific and Indian Ocean sectors. Climate Dynamics, 29, 63–71.
Büntgen, U., Esper, J., Frank, D.C., Nicolussi, K., & Schmidhalter, M., 2005. A 1052-year tree-ring proxy for Alpine summer temperatures. Climate Dynamics, 25, 141–153.
Büntgen, U., Tegel, W., Nicolussi, K., McCormick, M., Frank, D., et al., 2011. 2500 Years of European Climate Variability and Human Susceptibility. Science, 331, 578-582.
Cook, E.R., & Kairiukstis, L.A., 1990. Methods of Dendrochronology: Applications in the Environmental Sciences. Dordrecht, The Netherlands: Kluwer Academic Press.
Cook, E.R., Anchukaitis, K., Buckley, B., D’Arrigo, R., Jacoby, G., & Wright, W., 2010. Asian monsoon failure and megadrought during the last millennium. Science, 328, 486–489.
Coppola, A., Leonelli, G., Salvatore, M.C., Pelfini, M., & Baroni, C., 2013. Tree-ring–based summer mean temperature variations in the Adamello–Presanella Group (Italian Central Alps) 1610–2008 AD. Climate of the Past, 9, 211-221.
De Planhol, X. Famines. In: Encyclopædia Iranica, IX/2, p. 203-206. An updated version is available online at http://www.iranicaonline.org/articles/famines (accessed on 24 January 2012.
Dobrovolný, P., Rybnicek, M., Kolar, T., Brazdil, R., Trnka, M., & Büntgen, U., 2015. A tree-ring perspective on temporal changes in the frequency and intensity of hydroclimatic extremes in the territory of the Czech Republic since 761 AD. Climate of the Past, 11, 1453–1466.
Esper, J., 2000. Long-term tree-ring variations in Juniperus at the upper timberline in the Karakorum (Pakistan). The Holocene, 10(2), 153–260.
Fan, Z.X., Brauning, A., & Cao, K.F., 2008. Tree-ring based drought reconstruction in the central Hengduan Mountains region (China) since A.D. 1655. Int. J. Climatol, 28, 1879 –1887.
Fritts, H.C., 1976. Tree Rings and Climate. London: Academic Press.
Gholi Majd, M., 2003. The Great Famine and Genocide in Persia, 1917-1919. Lanham, MD: University Press of America.
He, M., Yang, B., Bräuning, A., Wang, J., & Wang, Z., 2013. Tree-ring-derived millennial precipitation record for the southern Tibetan Plateau and its possible driving mechanism. The Holocene, 23(1), 36–45.
Heinrich, I., Touchan, R., Linan, I.D., Vos, H., & Helle, G., 2013. Winter-to-spring temperature dynamics in Turkey derived from tree rings since AD 1125. Climate Dynamic, 41, 1685–1701.
Köse, N., Akkemik, Ü., Dalfes, H.N., & Özeren, M.S., 2011.Tree-ring reconstructions of May–June precipitation for western Anatolia. Quaternary Research, 75, 438-450.
Levanič, T., Popa, I., Poljanšek, S., & Nechita, C., 2013. A 323-year long reconstruction of drought for SW Romania based on black pine (Pinus Nigra) tree-ring widths. Int J Biometeorol, 57, 703–714.
Li, J., Chen, F., Cook, E.R., Gou, X., & Zhang, Y., 2007. Drought reconstruction for north central China from tree rings: the value of the Palmer drought severity index. Int. J. Climatol, 27, 903 – 909.
Li, J.B., Gou, X.H., Cook, E.R et al., 2006. Tree-ring based drought reconstruction for the central Tien Shan area in Northwestern China. Geophysical Research Letters, 33, L07715.
Liu, J., Yang, B., & Qin, C., 2011. Tree-ring based annual precipitation reconstruction since AD 1480 in south central Tibet. Quaternary International, 236(1-2), 75-81.
Melville, C., 1984. Meteorological Hazards and Disasters in Iran: A Preliminary Survey to 1950. Iran, 22, 113-150.
Nadi, M., Bazrafshan, J., Pourtahmasi, K., & Bräuning, A., 2016. Tree-Ring Based Reconstruction of the Joint Deficit Index in Javan-Roud Region, Kermanshah (Iran). International Journal of Climatology, DOI: 10.1002/joc.4715.
Nadi, M., Bazrafshan, J., Pourtahmasi, K., & Najafi Harsini, F., 2015. Relationship between oak's tree-ring width and climatic indices (in regional and global scales) in Javanroud region, Kermanshah. Journal of water and soil conservation Research, 22(3), 57-71.
Nadi, M., Khalili, A., Pourtahmasi, K., & Bazrafshan, J., 2013. Comparison of various interpolation techniques of climatic data for determining the most important factors affecting the trees growth at the elevated areas of Chaharbagh, Gorgan. Journal of Forest and Wood Products, 66(1), 83-95.
Najafi Harsini, F., Pourtahmasi, K., & Karimi, A.N., 2012. Dendrochronological investigation of radial growth of Quercus infectoria in Kermanshah Oak Forests. Journal of Forest and Wood Products, 65(1), 119-129.
Oberhuber, W., & Kofler, W., 2000. Topographic influences on radial growth of Scots pine (Pinus sylvestris L.) at small spatial scales. Plant Ecology, 146, 231–240.
Pourtahmasi, K., Parsapjouh, D., Bräuning, A., Esper, J., & Schweingruber, F.H., 2007. Climatic analysis of pointer years in tree-ring chronologies from northern Iran and neighbouring high mountain areas. Geoöko, 28, 27-42.
Pourtahmasi, K., Poursartip L., Bräuning, A., & Parsapjouh, D., 2009. Comparison between the radial growth of juniper (Juniperus polycarpus) and oak (Quercus macrantera) trees in two sides of the Alborz Mountains in Chaharbagh region of Gorgan. Journal of Forest and Wood Products, 62(2), 159-169.
Rahimi, J. Ebrahimpour, M. & Khalili, A., 2013. Spatial changes of Extended De Martonne climatic zones affected by climate change in Iran. Theoretical and Applied Climatology, 112(3-4), 409-418.
Schweingruber, F.H., 1988. Tree Rings: Basics and Applications of Dendrochronology. Dordrecht, The Netherlands: Kluwer Academic Press.
Seftigen, K., Linderholm, H.W., Drobyshev, I., & Niklasson, M., 2013. Reconstructed drought variability in southeastern Sweden since the 1650s. International Journal of Climatology, 33(11), 2449–2458.
Shao, X., Huang, L., Liu, H., Liang, E., Fang, X., & Wang, L., 2005. Reconstruction of precipitation variation from tree rings in recent 1000 years in Delingha, Qinghai. Science in China Ser. D Earth Sciences, 48(7), 939–949.
Sheppard, P., Tarasov, P., Graumlich L et al., 2004. Annual precipitation since 515 BC reconstructed from living and fossil juniper growth of Northeast Qinghai Province, China. Climate Dynamics, 23, 869–881.
Tian, Q.H., Gou, X.H., Zhang, Y. et al., 2007. Tree-ring based drought reconstruction (A.D. 1855–2001) for the Qilian Mountains, northwestern China. Tree-ring Research, 63(1), 27–36.
Touchan, R., Akkemik, Ü., Hughes, M.K., & Erkan, N., 2007. May–June precipitation reconstruction of southwestern Anatolia, Turkey during the last 900 years from tree rings. Quaternary Research, 68, 196–202.
Touchan, R., Funkhouser, G., Hughes, M., & Erkan, N., 2005. Standardized precipitation index reconstructed from Turkish Tree-ring widths. Climatic change, 72, 339-353.
Touchan, R., Meko, D., & Hughes, M.K., 1999. A 396-year reconstruction of precipitation in southern Jordan. Journal of the American Water Resources Association, 35, 49–59.
Touchan, R., Meko, D.M., & Aloui, A., 2008. Precipitation reconstruction for Northwestern Tunisia from tree rings. Journal of Arid Environments. 72, 1887–1896.
Yang, B., Bräuning, A., Liu, J.J. et al., 2009. Temperature changes over Tibetan Plateau during the past 600 years inferred from ice cores and tree rings. Global and Planetary Change, 69, 71–78.
Yang, B., Qin, C., Wang, J., He, M., Melvin, T.M., Osborn, T.J. Briffa, K.R., 2014. A 3,500-year tree-ring record of annual precipitation on the northeastern Tibetan Plateau. PNAS, 111(8), 2903–2908.
CAPTCHA Image