Predicting the Annual Dusty Days in Khorasan Razavi Province Using Spatial-Temporal Analysis

Document Type : Research Article

Authors

1 Payame Noor University, Iran

2 Kharazmi University,Tehran.Iran

3 Birjand University, Birjand, Iran

Abstract

Introduction

One of the most important environmental challenges in recent years in Khorasan Razavi province is the dust storm phenomenon. A survey on the average number of annual dust storm days in the Khorasan Razavi province shows that it has risen from an average of 6 days to 21 days from 1951 to 2016. And since 1993, it has grown strongly, which shows that reviewing and forecasting the coming years is of high importance. For the purpose of the study Gstat, Space time, SP, Raster, Spdep, and R Google Maps packages of R software are used alongside with Kriging method of spatial-temporal changes to investigate the number of annual dusty days and to predict their occurrence in the coming years.

Materials and Methods

In this study, the wind speed of 15 meters per second and more and a horizontal view below 1000 meters were considered by the World Meteorological Organization as a dusty day. Then, the SP Data array (Pebesma, 2013) was constructed as a combination of the matrix and vector in STFDF and STF classes (Hengel et al., 2015) according to the following equation:
Where the index i refers to the location number (position of view) and the j index to the time number. After that, the empirical Spatial –Temporal variogram were calculated using the Kriging method (Mohammadzadeh, 2012) and were calculated from the following equation:
where in:    
Represents the set of all couples of observations whose distance is in the neighborhood of the vector  and its time interval near   . Then all the separable and non-separable models were fitted to experimental data model, where the metric variogram with the least average square error was selected as the best model for predicting the number of dust storm days in the year.

Results and Discussion

The output of the model showed that data up to 5 years have a spatial-temporal dependence, and it is possible to estimate the number of dust storm days until 2022. Therefore, the most important spatial points are the annual number of dust storm days from higher values. They include: Northeast, Northwest and South East of Razavi Khorasan province. The predicted values of annual dust storm days in the central areas of Khorasan Razavi province in 2018 and 2019 shows that these areas will have the smallest number of dust storm days, but will gradually face with an increase in the number of dust storm days.
Accordingly, in 2022 most points except the limited points in the east, west and south east will have a significant increase in the number of dust storm days in the central areas.  The results show in 2019, Ghochan, Mashhad, Sarakhs, Sabzevar, Khaf, Torbat Jam and Fariman stations, with a maximum reliability of 95%, will have 40.48.41.46,56,47.41,41 dusty days, respectively. The highest number of dust storm days is related to Sabzevar station with 56 days, and after that Sarakhs with 47 days. Spatial-temporal forecasting trend of the number of dusty days in 2022 indicates that Gonabad Station has the best air quality index of 7 days. Furthermore, the maximum probability of occurrence of dusty days in Ghouchan, Mashhad, Sarakhs, Sabzevar, Khaf, Torbat Jam, and Fariman stations reaches up to 51, 46, 49, 61, 51, 44, and 45 days respectively, and will increase from 39 days to 43 days throughout the province in 2022.

Conclusion

According to the increasing number of dusty days in Khorasan Razavi province, investigating the prediction models is very important. Spatial-temporal Kriging method can use the intrinsic stability of the data to predict the number of dusty days in three dimensions of x, y, and t. This means that we can predict the number of dusty days in different places and times. Indeed, the intrinsic structure of the data plays a significant role in this regard. If the data algorithm is annual, monthly or daily, the output of the model will be proportional to the algorithm. Annual algorithm was able to deliver acceptable results in this research.

Keywords


آمار سازمان هواشناسی کشور، سرعت باد و دید افقی از 1/1/1987 لغایت 31/12/2016.
امیدوار، کمال؛ نکونام، زری؛ 1390. کاربرد گلباد و گل غبار در تحلیل پدیده گرد و خاک و تعیین رژیم فصلی بادهای همراه با این پدیده (مطالعه موردی: شهر سبزوار). پژوهش‌های جغرافیای طبیعی. 76. 104-85.
پورهاشمی، سمیرا؛ بروغنی، مهدی؛ زنگنه اسدی، محمدعلی؛ امیراحمدی، ابوالقاسم؛ 1394. تحلیل ارتباط پوشش گیاهی و وقوع تعداد روزهای گرد و غبار استان خراسان رضوی با استفاده از سیستم اطلاعات جغرافیایی و سنجش از دور. سنجش از دور و سامانه اطلاعات جغرافیایی در منابع طبیعی.6 (4). 44-33
جهانشیری، مهین، 1389؛ بررسی آماری و سینوپتیکی آلودگی هوای مشهد. پایان نامه کارشناسی جغرافیای طبیعی اقلیم شناسی. استاد راهنما: علیرضا انتظاری، دانشگاه حکیم سبزواری. سبزوار.
ضیائی گلریز، زهرا؛ صادقی، حمید؛ معتمدی، محمد؛ ژاله رجبی، میترا؛ 1390. پیش‌بینی ارزش‌گذاری و ترسیم نقشه آلودگی هوای شهر مشهد، (مطالعه موردی گاز مونوکسید کربن) 2 و 3 آذر ماه. اولین کنفرانس اقتصاد شهری ایران. مشهد.
علیجانی، بهلول؛ نجفی نیک، زهرا؛ 1388. بررسی سینوپتیکی اینورژن در مشهد با استفاده از تحلیل عاملی. مجله جغرافیا و توسعه ناحیه‌ای. 12، 12-1.
فرج زاده اصل، منوچهر، علیزاده؛ خاطره؛ 1389. تحلیل زمانی و مکانی طوفان‌های گرد و غبار در ایران. نشریه برنامه ریزی و آمایش فضا. 1، 84-65.
قربانی، محمد؛ فیروز زارع، علی؛ 1388. مقدمه‌ای بر ارزش‌گذاری محیط زیست. انتشارات دانشگاه فردوسی مشهد. 1389. 156.
کاخکی مهنه، حمید؛ 1392. استفاده از مدل شبکه عصبی مصنوعی در بررسی روابط بین عناصر اقلیمی و نوسانات آلودگی هوا در کلان شهر مشهد. پایان نامه کارشناسی ارشد. گرایش اقلیم شناسی در برنامه ریزی محیطی. استاد راهنما: محمد سلیقه. دانشگاه خوارزمی. تهران.
لشکری، حسن؛ کیخسروی، قاسم؛ 1387. تحلیل آماری سینوپتیکی طوفان‌های گرد و غبار استان خراسان رضوی در فاصله‌ی زمانی (2005-1993). پژوهش‌های جغرافیای طبیعی. 65. 33-17.
محمدزاده، محسن؛ 1394. آمار فضایی و کاربردهای آن. انتشارات دانشگاه تربیت مدرس. چاپ دوم. 27، 71، 81.
محمدی مرادیان، جمیله؛ حسین زاده، سیدرضا؛.1394. پایش ماهواره‌ای و تحلیل همدید پدیده گرد و غبار در کلان شهر مشهد طی دوره آماری 2013-2009. جغرافیا و مخاطرات محیطی. 14. 57-35
مهرشاهی، داریوش؛ نکونام، زری؛ 1388. بررسی آماری پدیده‌های گرد و غبار و تحلیل الگوی وزش بادهای گرد و غبارزا در شهرستان سبزوار. نشریه علمی- پژوهشی انجمن جغرافیایی ایران. 7 (22). 104-83
Annex II to the WMO Technical Regulations Part A – Alphnumeric Codes WMO-No. 306, A- 56,376,356, 2011edition, pp:l.2- CODE/FLAG Tabels/20-6.
Annex II to the WMO Technical Regulations, Manual on Codes International Codes Volume I.1, Part A – Alphnumeric Codes, Updated in 2015.pp:Xviii.
Bivand, R & Altman., M & Anselin, L. ( 2017). Spatial Dependense Weighting Schemes statistics and Model. Package ʽspdepʼ. R Core Development Team. 2017. Version 0.7-4. URL: http:// github.com/r-spatial/spdep/
Caeiro, F & Mateus, A. (2015). Testing Randomness in R. Package ʽrand testsʼ. R Development Core Team. 2015. Version 1.0.
Colles J, & Traylor.(2003). Francis, Air Pollution. Inc, Lamdon and New York.
Cressie, N. (1993). Statistics for spatial data,John Wily,Sons,NewYork.
De Cesare, L. Myers, D. Posab (2001). D. Estimating and modeling spacetime correlation structures. Statistics & Probability Letters. 51, (1), 9-14.
Gaetan, C. Guyon, X. (2010). Spatial Statistics and Modeling. Springer New York Dordrecht Heidelberg London. 166.
Gräler, B & Pebesma,E.& Heuvelink,( 2016). G. Spatio-Temporal Interpolation using gstat, The R Journal. 8/1,. 2073-4859.
Hengel,T & Roudier, P & Beaudette, D & Pebesma, E.(2015). Plot KML: Scientific Visualization of Spatio-Temporal Data. Journal of Statistical Software., 63(5). http://www.jstatsoft.org/ Institute for Geoinformatics University of M¨unster, Germany.
Kilibarda, M. (2013). A Plot Google Maps Tutorial. University of Belgrade, Faculty of Civil Engineering, Department of Geodesy and Geo informatics, Bulevar kralja Aleksandra,73, 11000 Belgrade, Serbia.3(14).
Loecher, M. (2016). Overlays on Static Maps. Package ʽR Google Mapsʼ. R Core Development Team. 2016. Version 1.0.4.1.
Mateus, A & Caeiro, F. (2014). ʺAn R Implementation Of Several randomness Testsʺ. Faculaded de ciencias e Tecnologia & CMA - Universidade Nova de Lisboa. International Conference of Comutational Methods in Science An Engineering. ICCMSE. 531- 534.
Pebesma, E, &.Bivand, R. Classes and Methods for Spatial Data. Version 1.2-5. Package ‘sp’. June 29, 2017 URL https://github.com/edzer/sp/ https://edzer.github.io/sp/
Pebesma, E. (2012). spacetime: Spatio-temporal data in R. Journal of Statistical Software, 51(7), 1-30.
Pebesma, E. (2013). Spatio-temporal overlay and aggregation. Ifgi. Institute for Geoinformatics University of Münster.
Pebesma, E. Spatial and Spatio-Temporal Geostatistical Modelling, Prediction and Simulation. ‘gstat’Package. R Development Core Team. 2017. Version 1.1-5. URL https://github. com/ edzer/ gstat/
Pebesma, E., & Gräler, B. (2016). Spatio-temporal geostatistics using gstat. Institute for Geoinformatics, University of Münster Rep.
Pebesma,E & Gräler, B. Gottfried,T. Hijmans, R.( 2017). Classes and Methods for Spatio-Temporal Data. spacetime’Package. R Development Core Team. Version 1.2-1. URL http:// github. com/ edzer/ spacetime
R Development Core Team. (2011). R: A language and environment for statistical computing.
Robert J. Hijmans. 2017. Geographic Data Analysis and Modeling.‘Raster’Package.R Core Development Team. Version 2.5-8.URL http://cran.r-project.org/package=raster.
United Nations Enviroment Programme, Environmental News Emergencies, Available from: URL: http//: www unep org/ depi/ programmes/ emergencies html, (Accessed: 2005).
CAPTCHA Image