Determining the Natural Frequency of Behbahan City Soil Using Microtremor Data Analysis

Document Type : Research Article

Authors

1 Assistant Professor in Civil Engineering, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran

2 MSc in Structural Engineering, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran

3 Assistant Professor in Civil Engineering, Yasouj University, Choram, Iran

4 MSc in Geography, Center of monitoring Assessment and Prediction of Natural Disasters (MAP), Behbahan Khatam Alanbia University of Technology, Behbahan, Iran

Abstract

Soil deformation can have a major impact on the seismic design inputs of structures. In practice, the soil is always bounded by rocks. In this case, the phenomenon of resonance or beating due to the closeness of the frequency of the structure to the natural frequency of the soil can be very destructive. For this reason, the natural frequency of the soil is considered in the construction regulations in presenting the spectral shape. To determine the natural frequency of soil in Behbahan city, the H/V method based on non-destructive measurement of ambient noise, which is a inexpensive and successful method for evaluating soil properties, was used. After recording microtremor data in 69 stations, H/V analysis was done to estimate the resonance frequency at the points. Then, natural frequency maps of the soil were presented. The results showed that the natural frequency range of soil in Behbahan city is between 0.57 and 5.42 Hz. Therefore, this soil is included in soil types 2 and 3 (standard No. 2800). Moreover, based on the construction information, a resonance-prone areas map was provided. In the central areas, the soil type is mainly type 3. Most of the buildings in this area are low codes, so it requires more precision in future developments. In the northwest and southeast of the city, the period of soil resonance is more than one second; therefore, in the construction of tall buildings in these areas, more strict measures should be taken into account to control the structures.

Graphical Abstract

Determining the Natural Frequency of Behbahan City Soil Using Microtremor Data Analysis

Keywords


ادیب، احمد؛ 1395. طبقه‌بندی ساختگاه بر مبنای فرکانس طبیعی مبتنی بر داده‌های لرزه‌ای و پیشنهاد استفاده از آن در آئین نامه طرح ساختمانها در برابر زلزله ایران، مطالعه موردی شهر اردکان. فیزیک زمین و فضا، (1)42، 75-88.https://doi.org/ 10.22059/jesphys.2016.54998
حکیمی، بهشته؛ معصومی، زهره؛ قدس، عبدالرضا؛ اعتماد سعید، نجمه؛ 1397. مطالعه اثر ساختگاه مبتنی بر HVSR مایکروترمور در شهر زنجان (ایران). مجله ژئوفیزیک ایران، (4)12، 115-139.https://www.ijgeophysics.ir/article_82770.html
صفاری، امیر؛ کیانی، سارا؛ عباس زاده، امیرعلی؛ 1401. پتانسیل سنجی مناطق آسیب پذیر در برابر مخاطرات طبیعی (مطالعه موردی: شهر رودهن). جغرافیا و مخاطرات محیطی. https://doi.org/10.22067/geoeh.2022.73710.1249
فلاحی، عبدالحسین؛ سمائی، مقداد؛ کارشی، جعفر؛ 1398. تعیین فرکانس غالب و طبقه‌بندی ساختگاه در تعدادی از ایستگاه‌های شتابنگاری شمال‌غرب ایران، با استفاده از اندازه‌گیری میکروتریمورها. فصلنامه علمی علوم زمین، 28(112)، 217-226https:// doi: 10.22071/gsj.2018.94986.1218
لامعی، مجید؛ عشایری، ایمان؛ بیگلری، مهنوش؛ کدیور، محمدامین؛ 1394. شناسایی سیستم دینامیکی خاک–سازه با استفاده از آزمایش ارتعاش محیطی (مطالعه موردی: پایه مسیر روزمینی قطار شهری کرمانشاه)، فصلنامه علوم و مهندسی زلزله، (3)2، 1-13http://www.bese.ir/article_240271.html
محمدیان، میلاد؛ 1399. تحلیل خطر احتمالی ریسک محور زمین‌لرزه بندر سیراف. جغرافیا و مخاطرات محیطی، (2)9، 61-82. https://doi.org/10.22067/geo.v9i2.85303
یاریان، پیمان؛ کرمی، محمدرضا؛ 1398. ارزیابی و عدم قطعیت آسیب‌پذیری شهرها ناشی از زلزله با مدل FAHP (نمونه موردی: شهر سنندج). جغرافیا و مخاطرات محیطی، (3)8، 185-203. https://doi.org/10.22067/geo.v0i0.81921
 
Berberian, M., 1981. Active faulting and tectonics of Iran: in: Zagros-Hindukush-Himalaya Geodynamic evolution, Gupta, H. K. and Delany, F. M. (eds.), Am. Geophys. Union and Geol. Soc. Am., Geodyn. Ser.,3, 33-69.https://doi.org/10.1029/GD003p0033
Bindi, D., Parolai, S., Spallarossa, D. and Cattaneo, M., 2000. Site effects by H/V ratio: comparison of two di_erent procedures," J. Earthq. Engrg. 4, 97{113.https://doi.org/ 10.1080/ 13632460009350364
Borcherdt, R. D., 1970. Effects of local geology on ground motion near San Francisco Bay. Bulletin of the Seismological Society of America, 60(1), 29-61.https://doi.org/ 10.1785/ BSSA0600010029
Chávez-García, F. J., Sánchez, L. R., & Hatzfeld, D., 1996. Topographic site effects and HVSR. A comparison between observations and theory. Bulletin of the Seismological Society of America, 86(5), 1559-1573.‏https://doi.org/10.1785/BSSA0860051559
European Commission., 2005), User guideline for the implementation of the H/V spectral ratio technique on ambient vibration: Measurement,processing and interpretation, Res. Gen. Dir. Proj. EVG1-CT-2000-00026 SESAME, Rep. D23.12, 62 pp., Brussels. http://SESAME-fp5.obs.ujf-grenoble.fr
Ghofrani, H., & Atkinson, G. M., 2014. Site condition evaluation using horizontal-to-vertical response spectral ratios of earthquakes in the NGA-West 2 and Japanese databases. Soil Dynamics and Earthquake Engineering, 67, 30-43. https://doi.org/10.1016/ j.soildyn. 2014.08.015
Kanai K. The requisite conditions for the predominant vibration of ground. Bull Earthquake Res Inst 1957;35:457–70. https://www.semanticscholar.org/paper/ 4bddbee33f3ab6f9 bf8a0b1 d7b197 1c8b63b6e6d
Kawase, H., Nagashima, F., Nakano, K., & Mori, Y., 2019. Direct evaluation of S-wave amplification factors from microtremor H/V ratios: Double empirical corrections to “Nakamura” method. Soil Dynamics and Earthquake Engineering, 126, 105067.‏https://doi.org/10.1016/j.soildyn.2018.01.049
Kham, M., Semblat, J. F., Bard, P. Y., & Gueguen, P., 2003, April. Seismic interaction between a building network and a sedimentary basin. In EGS-AGU-EUG Joint Assembly (p. 3679.‏https://www.researchgate.net/publication/235623210
Komak Panah, A., Hafezi Moghaddas, N., Ghayamghamian, M., Motosaka, M., Jafari, M., & Uromieh, A., 2002. Site Effect Classification in East-Central of Iran. Journal of Seismology and Earthquake Engineering, 4(1), 37-46.http://www.jsee.ir/article_240468.html
Langston, C. A., 1977. The effect of planar dipping structure on source and receiver responses for constant ray parameter. Bulletin of the Seismological Society of America, 67(4), 1029-1050.‏https://doi.org/10.1785/BSSA0670041029
Lermo, J., & Chávez-García, F. J. 1993. Site effect evaluation using spectral ratios with only one station. Bulletin of the seismological society of America, 83(5), 1574-1594.‏Lermo, J., & Chávez-García, F. J., 1994. Are microtremors useful in site response evaluation?. Bulletin of the seismological society of America, 84(5), 1350-1364. ‏https://doi.org/ 10.1785/ BSSA0840051350
Mirzaei, N., Gao, M., Chen, Y. T., 1998), Seismic source regionalization for seismic zoning of Iran: major seismotectonic provinces. J. Earthquake prediction Research, 7, 465-495.Nakamura, Yutaka., 1989. A method for dynamic characteristics estimation of subsurface using microtremor on the ground surface. Railway Technical Research Institute, Quarterly Reports 30.1.‏ https://www.researchgate.net/ profile/ Noorbakhsh-Mirzaei/ publication/ 290796328_
Nakamura, Y., Sato, T., & Nishinaga, M., 2000, November. Local site effect of Kobe based on microtremor measurement. In Proceeding of the Sixth International Conference on Seismic Zonation EERI, Palm Springs California. ‏ https://citeseerx.ist.psu.edu/ document?repid= rep1&type=pdf&doi= 4b1a8cc5872deefd1582cab13bd66149352bacff
Nowroozi AA., 1976. Seismotectonic provinces of Iran. Bull Seismol Soc Am 66:1249–1276
Pap, Z. B., & Kollár, L. P., 2018. Effect of resonance in soil-structure interaction for finite soil layers. Periodica Polytechnica Civil Engineering, 62(3), 676-684.‏ https:// doi.org/ 10.3311/ PPci.11960
Rosenblueth, E., & Meli, R., 1986. The 1985 mexico earthquake. Concrete international, 8(5), 23-34.‏ https://doi.org/10.1007/978-94-009-1433-9_5
Semblat, J. F., Duval, A. M., & Dangla, P., 2003. Modal superposition method for the analysis of seismic-wave amplification. Bulletin of the Seismological Society of America, 93(3), 1144-1153.‏ https://doi.org/10.1785/0120000087
Sezawa K., 1930. Possibility of the free—oscillations of the surface layer excited by the seismic waves. Bull Earthquake Res Inst;13:1–12. https://doi.org/10.1016/S0074-6142(05)80005-1
Thabet, M., 2019. Site-specific relationships between bedrock depth and HVSR fundamental resonance frequency using KiK-NET data from Japan. Pure and Applied Geophysics, 176(11), 4809-4831. ‏https://doi.org/10.1007/s00024-019-02256-7
Vassallo, M., Cultrera, G., Di Giulio, G., Cara, F., & Milana, G., 2022. Peak frequency changes from HV spectral ratios in Central Italy: Effects of strong motions and seasonality over 12 years of observations. Journal of Geophysical Research: Solid Earth, e2021JB023848. ‏https://doi.org/10.1029/2021JB023848
Vella, A., Galea, P., & D'Amico, S., 2013. Site frequency response characterisation of the Maltese islands based on ambient noise H/V ratios. Engineering geology, 163, 89-100.‏ https://doi.org/10.1016/j.enggeo.2013.06.006
Zafarani, H., Ghafoori, S. M. M., Adlparvar, M. R., Rajaeian, P., & Hasankhani, A., 2015. Application of time-and magnitude-predictable model for long-term earthquake prediction in Iran. Natural Hazards, 78(1), 155-178.‏https://doi.org/10.1016/0031-9201(94)90068-X
 
 
CAPTCHA Image