Seismic Hazard Assessment of Badakhshan Region (Northeast Afghanistan)

Document Type : Research Article

Authors

1 Ph.D in Geomorphological Hazards, Geography Colleg, University Of Tehran, Iran

2 Professor of Physical Geography,Geomorphology, Geography Colleg, University of Tehran, Iran

3 Professor of Eng Seismology IIEES, Tehran, Iran

4 Professor in Geomorphology, Geography Colleg, University of Tehran, Iran.

5 Assistant Professor, School of Mining Engineering, College of Engineering, University of Tehran, Iran

Abstract

Badakhshan region, located in the northeast of Afghanistan, has a complex geology. A catalog from 2011-2021 was prepared using the data of the Middle Asia seismic catalog with updates (1909-2011) from the website of the American Geological Survey. Considering the last earthquake with a magnitude of 7.2 in 2015, the coefficients of b were calculated to the maximum value of 1.0 and the value of 7.9 on the surface and in the depth, the increase in the numerical values of a and b in the central half has been completely evident. The results indicated that the current trend is opposite to the direction of the main fault in North Badakhshan (north-south direction). The most frequent earthquakes M≥4 occurs at a depth of 150-70 km, earthquakes M≥5 at a depth of 150-300 km, and earthquakes ≥6 at a depth of 150-300 km occur in the east-west direction. This area is exactly where the Pamir Corridor plate meets the center of Badakhshan. This shows that at the end of the Pamir Corridor from east to west, ruptures are being created at depths of 0-150 km. Two east-west and east-south trends are evident. Regarding the shallow earthquakes related to the upper 50 km of the crust, the dominant mechanism is of the normal type, which indicates the stretching of the crust in this section. According to the deep mechanism of earthquakes, the direction of the tensile force is in the east-west direction. This issue further confirms the issue of continental collision and then subduction towards the south of Badakhshan. The innovation of this research is the identification of seismic trends that have rarely been researched in the studied area, and its application is identifying high-risk areas for construction.

Graphical Abstract

Seismic Hazard Assessment of Badakhshan Region (Northeast Afghanistan)

Keywords

Main Subjects


- Ahmad, Z., Ali, Z., Ghani, F., & Khalid, S.,2022. Regeneration of Natural Forests in the Hindu Kush Range: A Case Study of Quercus baloot Plants in Sheshikoh Oak Forests, District Chitral, Pakistan. International Journal of Forestry Research, 2022. https://doi.org/10.1155/2022/2173092.
Ambraseys, N., & Bilham, R.,2011. Corruption kills. Nature, 469(7329), 153-155. http://dx.doi.org/10.1038/469153a.
- Asim, K. M., Schorlemmer, D., Hainzl, S., Iturrieta, P., Savran, W. H., Bayona, J. A., & Werner, M. J.,2022. Multi‐Resolution Grids in Earthquake Forecasting: The Quadtree Approach. Bulletin of the Seismological Society of America. https://doi.org/10.1785/0120220028.
- Bilham, R., & Ambraseys, N.,2005. Apparent Himalayan slip deficit from the summation of seismic moments for Himalayan earthquakes, 1500–2000. Current science, 1658-1663. https://www.semanticscholar.org/paper/Apparent-Himalayan-slip-deficit-from-the-summation-Bilham-Ambraseys/76faa0b9039fe001e04c58f4753ed2f53becfbeb.
- Bishop, M. P., James, L. A., Shroder Jr, J. F., & Walsh, S. J.,2012. Geospatial technologies and digital geomorphological mapping: Concepts, issues and research. Geomorphology, 137(1), 5-26. http://dx.doi.org/10.1016/j.geomorph.2011.06.027.
- Bufe, C. G.,1970. Frequency-magnitude variations during the 1970 Danville earthquake swarm. Earthquake Notes, 41(3), 3-7.https://doi.org/10.1080/00288306.1973.10425384.
- Chen, X., Xiang, N., Guan, Z., & Li, J.,2022. Seismic vulnerability assessment of tall pier bridges under mainshock-aftershock-like earthquake sequences using vector-valued intensity measure. Engineering Structures, 253, 113732. https://doi.org/10.1016/j.engstruct.2021.113732.
- Chetia, T., Baruah, S., Dey, C., Baruah, S., & Sharma, S.,2022. Seismic induced soil gas radon anomalies observed at multiparametric geophysical observatory, Tezpur (Eastern Himalaya), India: an appraisal of probable earthquake forecasting model based on peak radon anomalies. Natural Hazards, 111(3), 3071-3098. https://link.springer.com/article/10.1007%2Fs11069-021-05168-9.
- Danciu, L., Şeşetyan, K., Demircioglu, M., Gülen, L., Zare, M., Basili, R., ... & Giardini, D.,2018. The 2014 earthquake model of the Middle East: seismogenic sources. Bulletin of Earthquake Engineering , 16 (8), 3465-3496. https://link.springer.com/article/10.1007/s10518-017-0096-8.
- Darvoziev, M.,2006. Short essay of woody and brushwood plants of the basin of Yazgulom River (mountainous Badakhshan. Vestnik Natsionalnogo Universiteta, 5(31), 160-177. https://inis.iaea.org/search/searchsinglerecord.aspx?recordsFor=SingleRecord&RN=38094056.
- Giardini, D., Danciu, L., Erdik, M., Şeşetyan, K., Demircioğlu Tümsa, MB, Akkar, S., ... & Zare, M.,2018. Seismic hazard map of the Middle East. Bulletin of Earthquake Engineering , 16 (8), 3567-3570. http://dx.doi.org/10.1007/s10518-018-0347-3.
- Gorbunova, E. M., Batukhtin, I. V., Besedina, A. N., & Petukhova, S. M.,2022. Hydrogeological Responses of Fluid-Saturated Collectors to Remote Earthquakes. In Processes in GeoMedia—Volume IV (pp. 203-214. Springer, Cham. https://doi.org/10.3390/w15071322.
- Gutenberg, B.,1947. Microseisms and weather forecasting. Journal of Atmospheric Sciences, 4(1), 21-28.https://doi.org/10.1175/1520-0469(1947)004%3C0021:MAWF%3E2.0.CO;2.
- Kaila, K. L., Gaur, V. K., & Narain, H.,1972. Quantitative seismicity maps of India. Bulletin of the Seismological Society of America , 62 (5), 1119-1132. https://doi.org/10.1111/j.1365-246X.1979.tb06766.x.
- Kamranzad, F., Memarian, H., & Zare, M.,2020. Earthquake risk assessment for Tehran, Iran. ISPRS International Journal of Geo-Information, 9(7), 430. https://doi.org/10.3390/ijgi9070430.
- Kariche, J.,2022. Role of fluid on earthquake occurrence: Example of the 2019 Ridgecrest and the 1997, 2009 and 2016 Central Apennines sequences. http://dx.doi.org/10.31223/X5MH1J.
- Karimiparidari, S., Zaré, M., Memarian, H., & Kijko, A.,2013. Iranian earthquakes, a uniform catalog with moment magnitudes. Journal of Seismology , 17 (3), 897-911. http://dx.doi.org/10.1007/s10950-013-9360-9.
- Korb, C. A., Elbaz, H., Schuster, A. K., Nickels, S., Ponto, K. A., Schulz, A., ... & Pfeiffer, N.,2022. Five-year cumulative incidence and progression of age-related macular degeneration: results from the German population-based Gutenberg Health Study (GHS). Graefe's Archive for Clinical and Experimental Ophthalmology, 260(1), 55-64. https://doi.org/10.1007/s00417-021-05312-y.
- Kozin, F.,1988. Autoregressive moving average models of earthquake records. Probabilistic Engineering Mechanics, 3(2), 58-63. https://doi.org/10.1016/0266-8920(88)90016-1.
- Kufner, S. K., Kakar, N., Bezada, M., Bloch, W., Metzger, S., Yuan, X., ... & Schurr, B.,2021. The Hindu Kush slab break-off is revealed by deep structure and crustal deformation. Nature communications, 12(1), 1-11. https://www.nature.com/articles/s41467-021-21760-w.
- Li, C., Peng, Z., Yao, D., Meng, X., & Zhai, Q.,2022. Temporal changes of seismicity in Salton Sea Geothermal Field due to distant earthquakes and geothermal productions. Geophysical Journal International, 232(1), 287-299. https://doi.org/10.1093/gji/ggac324.
- Lukk, A. A., Yunga, S. L., Shevchenko, V. I., & Hamburger, M. W.,1995. Earthquake focal mechanisms, deformation state, and seismotectonics of the Pamir‐Tien Shan region, Central Asia. Journal of Geophysical Research: Solid Earth, 100(B10), 20321-20343. http://dx.doi.org/10.1029/95JB02158.
- McKenzie, J., & Moorey, P. R. S.,2007. The Architecture of Alexandria and Egypt, c. 300 BC to AD 700 (Vol. 63). New Haven: Yale University Press.https://archive.org/details/judith-mc-kenzie-the-architecture-of-alexandria-and-egypt-c.-300-b.-c.-to-a.-d.-
- Mellors, R. J., Pavlis, G. L., Hamburger, M. W., Al‐Shukri, H. J., & Lukk, A. A.,1995. Evidence for a high‐velocity slab associated with the Hindu Kush seismic zone. Journal of Geophysical Research: Solid Earth, 100(B3), 4067-4078.  https://doi.org/10.1029/94JB02642.
- Metzger, S., Ischuk, A., Deng, Z., Ratschbacher, L., Perry, M., Kufner, S. K., ... & Moreno, M.,2020. Dense GNSS profiles across the northwestern tip of the India‐Asia collision zone: Triggered slip and westward flow of the Peter the First Range, Pamir, into the Tajik Depression. Tectonics, 39(2), e2019TC005797. https://doi.org/10.1029/2019TC005797.
- Metzger, S., Kakar, N., Zubovich, A., Borisov, M., Saif, S., Panjsheri, A. H., Rahmani, J. R., Zaryab, M. Y., Rezai, M. T., Deng, Z., Bendick, R., Kufner, S.-K., Okoev, J.,2021): Survey mode GNSS data, acquired 2014-2019 in the Afghan Hindu Kush and across northern Pamir margin, Central Asia. https://doi.org/10.5880/GFZ.4.1.2021.003.
- Nekrasova, A., & Kossobokov, V.,2022. The Lake Baikal Unified Scaling Law for Earthquake Regional Coefficients. In Problems of Geocosmos–2020 (pp. 253-261). Springer, Cham.  http://dx.doi.org/10.1134/S1069351320010097.
- Nosova, A. A., Kopylova, M. G., Lebedeva, N. M., Larionova, Y. O., Kargin, A. V., Sazonova, L. V., ... & Kovach, V. P.,2022. Melt sources for alkaline carbonate-bearing rocks of the Terskiy Coast (Kola Alkaline Carbonatitic Province). Chemical Geology, 121267.
- Nuannin, P., Kulhanek, O., & Persson, L.,2005. Spatial and temporal b value anomalies preceding the devastating off coast of NW Sumatra earthquake of December 26, 2004. Geophysical research letters, 32(11).  https://ui.adsabs.harvard.edu/link_gateway/2005GeoRL..3211307N/doi:10.1029/2005GL022679.
- Pacheco, J. F., & Sykes, L. R.,1992. Seismic moment catalog of large shallow earthquakes, 1909 to 1989. Bulletin of the Seismological Society of America, 82(3), 1306-1349. https://doi.org/10.1785/BSSA0820031306.
- Rahman, Z., Rehman, K., Ali, W., Ali, A., Burton, P., Barkat, A., ... & Qadri, S. M.,2021. Re-appraisal of earthquake catalog in the Pamir―Hindu Kush region, emphasizing the early and modern instrumental earthquake events. Journal of Seismology, 25(6), 1461-1481. https://ui.adsabs.harvard.edu/link_gateway/2021JSeis..25.1461R/doi:10.1007/s10950-021-10046-9.
- Ruppert, N. A., Lees, J. M., Kozyreva, N. P., & Eichelberger, J.,2007. Seismicity, earthquakes and structure along the Alaska-Aleutian and Kamchatka-Kurile subduction zones: A review.  GEOPHYSICAL MONOGRAPH-AMERICAN GEOPHYSICAL UNION, 172, 129. http://dx.doi.org/10.1029/172GM12.
- Sarikaya, M. A., Bishop, M. P., Shroder, J. F., & Olsenholler, J. A.,2012. Space-based observations of Eastern Hindu Kush glaciers between 1976 and 2007, Afghanistan and Pakistan. Remote sensing letters, 3(1), 77-84. https://doi.org/10.1080/01431161.2010.536181.
- Shahvar, M. P., Zare, M., & Castellaro, S.,2013. A unified seismic catalog for the Iranian plateau (1909–2011). Seismological Research Letters, 84 (2), 233-249. http://dx.doi.org/10.1785/0220130084.
- Shahzad, F., Mahmood, S. A., & Gloaguen, R.,2008, November. Remote sensing analysis of ongoing deformation in Hazara Kashmir Syntaxis in Northern Pakistan. In 2008 Second Workshop on Use of Remote Sensing Techniques for Monitoring Volcanoes and Seismogenic Areas (pp. 1-4). IEEE. DOI: 10.1109/USEREST.2008.4740350.
- Shroder, J. F.,2012. Afghanistan: rich resource base and existing environmental despoliation. Environmental Earth Sciences, 67(7), 1971-1986. DOI: 10.1007/s12665-012-1638-7.
- Waseem, M., Lateef, A., Ahmad, I., Khan, S., & Ahmed, W.,2019. Seismic hazard assessment of Afghanistan. Journal of Seismology, 23(2), 217-242. DOI: http://dx.doi.org/10.1007/s10950-018-9802-5.
- Yang, Y., Zeng, Z., King, S. D., & Shuang, X.,2022. Double-sided subduction with contrasting polarities beneath the Pamir-Hindu Kush: Evidence from focal mechanism solutions and stress field inversion. Geoscience Frontiers, 13(4), 101399. https://doi.org/10.1016/j.gsf.2022.101399.
- Zare, M., Amini, H., Yazdi, P., Sesetyan, K., Demircioglu, MB, Kalafat, D., ... & Tsereteli, N.,2014. Recent developments of the Middle East catalog. Journal of Seismology, 18 (4), 749-772. http://dx.doi.org/10.1007/s10950-014-9444-1.
- Zhang, X., Zhang, Q., Zhang, Z., Chen, Y., Xie, Z., Wei, J., & Zhou, Z.,2015. Rechargeable Li–CO 2 batteries with carbon nanotubes as air cathodes. Chemical Communications, 51(78), 14636-14639. DOI: 10.1002/adma.201700396.
 
 
CAPTCHA Image