Evaluating and Identifying Potential Areas for the Construction of Industrial Parks in Urmia City

Document Type : Research Article

Authors

1 MA in Regional Planning, Shahid Beheshti University, Tehran, Iran

2 MA in Urban Design, Tabriz Islamic Art University, Tabriz, Iran

3 Postoctoral in Urban Planning, University of Tehran, Tehran, Iran

Abstract

Urmia city is a region with high potential for the development of industrial centers. However, in the last few decades, the indiscriminate development of industries in this area has led to environmental and socio-economic problems. This study aimed to identify areas prone to the construction of an industrial town in this city and evaluate the existing areas. In order to collect the required data of this descriptive-analytical study, library studies were used. Moreover, in order to achieve the goals of the research, the combined Boolean and fuzzy multi-criteria evaluation method were used. At first, relying on seven criteria of distance from the city, slope, height, fault, waterway, communication lines and land use, maps of restrictions and factors were drawn. In the second step, the fuzzy primary suitability map and the Boolean primary suitability map were prepared and finally, based on the correlation coefficients and standard deviation of the operators, gamma 0.5 was chosen as the most appropriate gamma to overlap the two mentioned maps. The results showed that about 94% of the area of ​​the region is completely unsuitable for the establishment of industries and only about 6% of the area are approximately suitable to completely suitable. Regarding the evaluation of the establishment of the existing industrial areas, it was found that the industrial town of Phase 1 and 2, Karimabad industrial area and the electronics and food industry town are located in the inappropriate area of ​​establishment. Moreover, ​​8 square kilometers of the Phase 3 of the industrial town is located in the suitable area for settlement and 1 square kilometer is located in the unsuitable area for settlement.

Graphical Abstract

Evaluating and Identifying Potential Areas for the Construction of Industrial Parks in Urmia City

Keywords


افشاری، سمیرا؛ لطفی، علی؛ 1399. مکانیابی صنایع با استفاده از روش‌های ارزیابی چندمعیاره در شهرستان گلپایگان. فصلنامه علمی-پژوهشی اطلاعات جغرافیایی «سپهر». 29(116)، 151-166https://www.sepehr.org/article_242866.html?lang=fa
خلیجی، محمدعلی؛ سعیده زرآبادی، زهراسادات؛ 1394. تحلیلی بر مکان­یابی شهرک­های صنعتی در شهرستان تبریز با بهره‌گیری از مدل­های تصمیم­گیری چند معیاره. فصلنامه علمی-پژوهشی برنامه­ریزی منطقه­ای. 5 (19)، 101-114.https://jzpm.marvdasht.iau.ir/?_action=articleInfo&article=916
سالاری، مسعود؛ شریعت، سید محمود؛ رحیمی، راضیه؛ دشتی، سولماز؛ 1397. ارزیابی توان سرزمین به‌منظور استقرار کاربری شهرک صنعتی با استفاده از روش تصمیم‌گیری چند معیاره و AHP (مطالعه موردی: جزیره قشم). فصلنامه جغرافیا (برنامه­ریزی منطقه­ای). 8(3)، 303-315. https://www.jgeoqeshm.ir/article_69935.html
سالنامه آماری کل کشور، استان آذربایجان غربی، ۱۳۹۸
صابری فر، رستم؛ 1391. مطالعه توسعه فیزیکی شهر بیرجند با معیار مخاطرات محیطی. فصلنامه علمی ـ پژوهشی پژوهش­های بوم‌شناسی شهری، 3(6)، 93-102.‎https://grup.journals.pnu.ac.ir/article_1060.html
کرمی، فریبا؛ قنبری، ابوالفضل؛ علیرضایی، معصومه؛ 1398. تحلیلی بر مکانیابی شهرک­های صنعتی شهرستان بستان‌آباد با استفاده از روش­های تصمیم­گیری چند معیاره. فصلنامه جغرافیا (برنامه­ریزی منطقه­ای). 10 (1-2)، 626-607.https://www.jgeoqeshm.ir/article_104514.html
مجیدی خامنه، بتول؛ جنگی، حسن؛ 1393. تحلیل فضایی استقرار بهینۀ شهرک‌های صنعتی در پیرامون شهرها با بهره‌گیری از مدل‌های تلفیقی بولین و فازی در محیط GIS مطالعه موردی: کلانشهر تبریز. مطالعات و پژوهش‌های شهری و منطقه‌ای، 7(25)، 19-37.‎https://urs.ui.ac.ir/article_20137.html
معتمدی، محمد؛ زعفرانلو، عطااله؛ خالقی، محمد؛ 1392. مکان‌یابی شهرک‌های صنعتی با استفاده از GIS فازی نمونه موردی (شهرک صنعتی شیروان). فصلنامه علمی و پژوهشی نگرش­های نو در جغرافیای انسانی. 6 (1)، 114-104.https://geography.garmsar.iau.ir/article_665605.html
یاسوری، مجید؛ 1392. بررسی وضعیت استقرار صنایع و مکان‌یابی شهرک‌های صنعتی در شهرستان مشهد. مجله آمایش سرزمین. 5(2)، 261-288.‎https://jtcp.ut.ac.ir/article_50085.html
 
Aghmashhadi, A. H., Azizi, A., Hoseinkhani, M., Zahedi, S., & Cirella, G. T., 2022. Industrial park land capability assessment and post-evaluation in Markazi province. Applied Geomatics, 14(1), 105-118. https://doi.org/10.1007/s12518-021-00415-x
Aljohani, K., & Thompson, R. G., 2020. A multi-criteria spatial evaluation framework to optimise the siting of freight consolidation facilities in inner-city areas. Transportation Research Part A: Policy and Practice, 138, 51-69. https://doi.org/10.1016/j.tra.2020.05.020
Alkaradaghi, K., Ali, S. S., Al-Ansari, N., Laue, J., & Chabuk, A., 2019 a. Landfill site selection using MCDM methods and GIS in the Sulaimaniyah Governorate, Iraq. Sustainability, 11(17), 4530. https://doi.org/10.3390/su11174530
Al-Mulali, U., Weng-Wai, C., Sheau-Ting, L., & Mohammed, A. H., 2015. Investigating the environmental Kuznets curve (EKC) hypothesis by utilizing the ecological footprint as an indicator of environmental degradation. Ecological indicators, 48, 315-323. https://doi.org/10.1016/j.ecolind.2014.08.029
Arabsheibani, R., Kanani Sadat, Y., & Abedini, A., 2016. Land suitability assessment for locating industrial parks: a hybrid multi criteria decision‐making approach using Geographical Information System. Geographical Research, 54(4), 446-460. https://doi.org/10.1111/1745-5871.12176
Aung, T. S., 2017. Evaluation of the environmental impact assessment system and implementation in Myanmar: Its significance in oil and gas industry. Environmental Impact Assessment Review, 66, 24-32. https://doi.org/10.1016/j.eiar.2017.05.005
Badi, I., Ballem, M., & Shetwan, A., 2018. SITE SELECTION OF DESALINATION PLANT IN LIBYA BY USING COMBINATIVE DISTANCE-BASED ASSESSMENT (CODAS) METHOD. International Journal for Quality Research, 12(3). https://doi.org/10.18421/IJQR12.03-04
Barzehkar, M., Dinan, N. M., Mazaheri, S., Tayebi, R. M., & Brodie, G. I., 2019. Landfill site selection using GIS-based multi-criteria evaluation (case study: SaharKhiz Region located in Gilan Province in Iran). SN Applied Sciences, 1(9), 1-11. https://doi.org/10.1007/s42452-019-1109-9
Chauhan, A., & Singh, A., 2016. A hybrid multi-criteria decision making method approach for selecting a sustainable location of healthcare waste disposal facility. Journal of Cleaner Production, 139, 1001-1010. https://doi.org/10.1016/j.jclepro.2016.08.098
Cheng, C., & Thompson, R. G., 2016. Application of boolean logic and GIS for determining suitable locations for Temporary Disaster Waste Management Sites. International Journal of Disaster Risk Reduction, 20, 78-92. https://doi.org/10.1016/j.ijdrr.2016.10.011
Fenno, L. E., Mattis, J., Ramakrishnan, C., Hyun, M., Lee, S. Y., He, M., ... & Deisseroth, K., 2014. Targeting cells with single vectors using multiple-feature Boolean logic. Nature methods, 11(7), 763-772. https://doi.org/10.1038/nmeth.2996
Francis, A., 2015. Analyzing the environmental impact assessment process for sustainable development of the oil and gas industry in Trinidad and Tobago. Electrical thesis dissertation. https://digitalcommons.georgiasouthern.edu/etd/1321/
Gbanie, S. P., Tengbe, P. B., Momoh, J. S., Medo, J., & Kabba, V. T. S., 2013. Modelling landfill location using geographic information systems (GIS) and multi-criteria decision analysis (MCDA): case study Bo, Southern Sierra Leone. Applied Geography, 36, 3-12. https://doi.org/10.1016/j.apgeog.2012.06.013
Ghasemi, G., Noorollahi, Y., Alavi, H., Marzband, M., & Shahbazi, M., 2019. Theoretical and technical potential evaluation of solar power generation in Iran. Renewable Energy, 138, 1250-1261. https://doi.org/10.1016/j.renene.2019.02.068
Ghobadi, M. H., Babazadeh, R., & Bagheri, V., 2013. Siting MSW landfills by combining AHP with GIS in Hamedan province, western Iran. Environmental earth sciences, 70(4), 1823-1840 https://doi.org/10.1007/s12665-013-2271-9
Hadipour, A., Vafaie, F., & Hadipour, V., 2015. Land suitability evaluation for brackish water aquaculture development in coastal area of Hormozgan, Iran. Aquaculture international, 23(1), 329-343. https://doi.org/10.1007/s10499-014-9818-y
Hermann, B. G., Kroeze, C., & Jawjit, W., 2007. Assessing environmental performance by combining life cycle assessment, multi-criteria analysis and environmental performance indicators. Journal of cleaner production, 15(18), 1787-1796. https://doi.org/10.1016/j.jclepro.2006.04.004
Ibrahim, G. R. F., Hamid, A. A., Darwesh, U. M., & Rasul, A., 2021. A GIS-based Boolean logic-analytical hierarchy process for solar power plant (case study: Erbil Governorate—Iraq). Environment, Development and Sustainability, 23(4), 6066-6083. https://doi.org/10.1007/s10668-020-00862-3
Izadikhah, M., & Saen, R. F., 2016. A new preference voting method for sustainable location planning using geographic information system and data envelopment analysis. Journal of Cleaner Production, 137, 1347-1367. https://doi.org/10.1016/j.jclepro.2016.08.021
Khamis, A., Khatib, T., Yosliza, N. A. H. M., & Azmi, A. N., 2020. Optimal selection of renewable energy installation site in remote areas using segmentation and regional technique: A case study of Sarawak, Malaysia. Sustainable Energy Technologies and Assessments, 42, 100858. https://doi.org/10.1016/j.seta.2020.100858
Kharat, M. G., Kamble, S. J., Raut, R. D., & Kamble, S. S., 2016. Identification and evaluation of landfill site selection criteria using a hybrid Fuzzy Delphi, Fuzzy AHP and DEMATEL based approach. Modeling Earth Systems and Environment, 2(2), 1-13. https://doi.org/10.1007/s40808-016-0171-1
Khavarian-Garmsir, A. R., & Rezaei, M. R., 2015. Selection of appropriate locations for industrial areas using GIS-Fuzzy methods. a case study of Yazd Township, Iran. Journal of Settlements and Spatial Planning, 6(1), 19-25.
Lewis, S. M., Gross, S., Visel, A., Kelly, M., & Morrow, W., 2015. Fuzzy gis‐based multi‐criteria evaluation for us agave production as a bioenergy feedstock. Gcb Bioenergy, 7(1), 84-99. https://doi.org/10.1111/gcbb.12116
Li, Y., Lin, C., Wang, Y., Gao, X., Xie, T., Hai, R., ... & Zhang, X., 2017. Multi-criteria evaluation method for site selection of industrial wastewater discharge in coastal regions. Journal of Cleaner Production, 161, 1143-1152.
Luo, C., Ju, Y., Gonzalez, E. D. S., Dong, P., & Wang, A., 2020. The waste-to-energy incineration plant site selection based on hesitant fuzzy linguistic Best-Worst method ANP and double parameters TOPSIS approach: A case study in China. Energy, 211, 118564. https://doi.org/10.1016/j.energy.2020.118564
Mierzwiak, M., & Calka, B., 2017. Multi-criteria analysis for solar farm location suitability. Reports on Geodesy and Geoinformatics, 104. https://doi.org/10.1515/rgg-2017-0012
Motlagh, Z. K., & Sayadi, M. H., 2015. Siting MSW landfills using MCE methodology in GIS environment (Case study: Birjand plain, Iran). Waste management, 46, 322-337. https://doi.org/10.1016/j.wasman.2015.08.013
Nuhu, S. K., Reba, M. N. M., Abd Manan, Z., Alwi, S. R. W., & Ridzuan, F. N. S., 2022. Assessing the Criteria of Eco-Industrial Park Site Selection for the Sustainable Development Goals Initiatives. In Sustainability Management Strategies and Impact in Developing Countries. Emerald Publishing Limited. https://doi.org/10.1108/S2040-726220220000026011
Reisi, M., Aye, L., & Soffianian, A., 2011. Industrial site selection by GIS in Isfahan, Iran. In 2011 19th International Conference on Geoinformatics (pp. 1-4). IEEE. https://doi.org/10.1109/GeoInformatics.2011.5981171
Rikalovic, A., Cosic, I., & Lazarevic, D., 2014. GIS based multi-criteria analysis for industrial site selection. Procedia engineering, 69, 1054-1063.
Rikalovic, A., Cosic, I., Labati, R. D., & Piuri, V., 2015. A comprehensive method for industrial site selection: the macro-location analysis. IEEE Systems Journal, 11(4), 2971-2980. https://doi.org/10.1109/JSYST.2015.2444471
Saadat Foomani, M., Karimi, S., Jafari, H., & Ghorbaninia, Z., 2017. Using boolean and fuzzy logic combined with analytic hierarchy process for hazardous waste landfill site selection: A case study from Hormozgan province, Iran. Advances in environmental technology, 3(1), 11-25. https://doi.org/10.22104/aet.2017.502
Yankiv-Vitkovska, L., Peresunko, B., Wyczałek, I., & Papis, J., 2020. Site selection for solar power plant in Zaporizhia city (Ukraine). Geodesy and Cartography, 69(1). https://doi.org/12.10.24425/gac.2020.131076
Yousefi, H., Hafeznia, H., & Yousefi-Sahzabi, A., 2018. Spatial site selection for solar power plants using a gis-based boolean-fuzzy logic model: A case study of Markazi Province, Iran. Energies, 11(7), 1648. https://doi.org/10.3390/en11071648
Zailani, S., Wahid, N. A., Premkumar, R., & Sathasivam, M., 2007. The relationship between quality improvement and firms' productivity in Malaysia. International Journal of Productivity and Quality Management, 2(3), 347-364.
Zarin, R., Azmat, M., Naqvi, S. R., Saddique, Q., & Ullah, S., 2021. Landfill site selection by integrating fuzzy logic, AHP, and WLC method based on multi-criteria decision analysis. Environmental Science and Pollution Research, 28(16), 19726-19741. https://doi.org/10.1007/s11356-020-11975-7
Zhang, J., Xu, C., Song, Z., Huang, Y., & Wu, Y., 2019. Decision framework for ocean thermal energy plant site selection from a sustainability perspective: The case of China. Journal of Cleaner Production, 225, 771-784. https://doi.org/10.1016/j.jclepro.2019.04.032
 
 
 
 
 
CAPTCHA Image