Abed, H., Sahraeyan, F., & Rezaei, P. (2016). The Effects of Garmesh Wind on Weather Conditions of Rasht Synoptic Weather Station.
Journal of Geography and Environmental Hazards,
4(2), 59-76. [In Persian]
https://doi.org/10.22067/geo.v4i2.29820
Alcasena, F., Ager, A., Le Page, Y., Bessa, P., Loureiro, C., & Oliveira, T. (2021). Assessing Wildfire Exposure to Communities and Protected Areas in Portugal. Fire, 4, 82. https://doi.org/10.3390/fire4040082
Alhaj Khalaf, M. W., Shataee Joibary, S., Jahdi, R., & Bacciu, V. (2021). Improved forest fire spread mapping by developing custom fire fuel models in replanted forests in Hyrcanian forests, Iran.
Forest Systems,
30(2), e008.
https://doi.org/10.5424/fs/2021302-17980
Awad, M., & Khanna, R. (2015). Support Vector Machines for Classification. In Efficient Learning Machines. Apress, Berkeley, CA. https://doi.org/10.1007/978-1-4302-5990-9_3
Byram, G. M. (1959). Combustion of forest fuels. Forest Fire Control and Use, 61 - 89.
Calkin, D. E., Ager, A. A., & Gilbertson-Day, J. (2010). Wildfire risk and hazard: procedures for the first approximation. Gen. Tech. Rep. RMRS-GTR-235. Fort Collins, CO: US Department of Agriculture, Forest Service, Rocky Mountain Research Station.
Catry, F. X., Rego, F. C., Bação, F. L., & Moreira, F. (2009). Modeling and mapping wildfire ignition risk in Portugal.
International Journal of Wildland Fire,
18(8), 921-931.
https://doi.org/10.1071/WF07123
De Cáceres, M., Martin StPaul, N., Turco, M., Cabon, A., & Granda, V. (2018). Estimating daily meteorological data and downscaling climate models over landscapes. Environmental Modelling & Software, 108, 186-196. https://doi.org/10.1016/j.envsoft.2018.08.003
Dorph, A., Marshall, E., Parkins, K. A., & Penman, T. D. (2022). Modelling ignition probability for human- and lightning-caused wildfires in Victoria, Australia. Natural Hazards and Earth System Sciences, 22, 3487–3499. https://doi.org/10.5194/nhess-22-3487-2022.
Evers, C., Holz, A., Busby, S., & Nielsen-Pincus, M. (2022). Extreme Winds Alter Influence of Fuels and Topography on Megafire Burn Severity in Seasonal Temperate Rainforests under Record Fuel Aridity. Fire, 5, 41. https://doi.org/10.3390/fire5020041
Finney, M. A. (2004). FARSITE, Fire Area Simulator--model development and evaluation . US Department of Agriculture, Forest Service, Rocky Mountain Research Station.
Finney, M. A. (2005). The challenge of quantitative risk analysis for wildland fire. Forest Ecology and Management, 211, 97–108. https://doi.org/10.1016/j.foreco.2005.02.010
Finney, M. A. (2006). An overview of FlamMap fire modeling capabilities. In: Andrews, Patricia L.; Butler, Bret W., comps. Fuels Management-How to Measure Success. Proceedings RMRS-P-41. Fort Collins, CO: US Department of Agriculture, Forest Service, Rocky Mountain Research Station. 213-220 .
Ghayour, L., Neshat, A., Paryani, S., Shahabi, H., Shirzadi, A., Chen, W., … & Ahmad, A. (2021). Performance Evaluation of Sentinel-2 and Landsat 8 OLI Data for Land Cover/Use Classification Using a Comparison between Machine Learning Algorithms.
Remote Sensing,
13, 1349.
https://doi.org/10.3390/rs13071349
Glaves, D. J., Crowle, A. J. W., Bruemmer, C., & Lenaghan, S. A. (2020). The causes and prevention of wildfire on heathlands and peatlands in England. Natural England Evidence Review NEER014. Peterborough: Natural England.
Heydari, H., Arabi, M., & Warziniack, T. (2021a). Effects of Climate Change on Natural-Caused Fire Activity in Western U.S. National Forests. Atmosphere, 12, 981. https://doi.org/10.3390/atmos12080981
Heydari, M., Attar Roshan, S., Jaferyan, E., & Abiyat, M. (2021b). Modeling and Zoning of Fire Prone Areas in Zagros Forests Using Geographic Information System Based on Logistic Regression.
Journal of Geography and Environmental Hazards,
10(2), 43-58. [In Persian]
https://doi.org/10.22067/geoeh.2021.68903.1019
Hood, S. M., Varner, J. M., Jain, T. B., & Kane, J. M. (2022). A framework for quantifying forest wildfire hazard and fuel treatment effectiveness from stands to landscapes.
Fire Ecology,
18, 33.
https://doi.org/10.1186/s42408-022-00157-0
Jahdi, R., Salis, M., Alcasena, F. J., Arabi, M., Arca, B., & Duce, P. (2020). Evaluating landscape-scale wildfire exposure in northwestern Iran.
Natural Hazards,
101, 911–932.
https://doi.org/10.1007/s11069-020-03901-4
Jahdi, R., Salis, M., Alcasena, F., & Del Giudice, L. (2023). Assessing the Effectiveness of Silvicultural Treatments on Fire Behavior in the Hyrcanian Temperate Forests of Northern Iran.
Environmental Management,
72, 682–697.
https://doi.org/10.1007/s00267-023-01785-1
Janbozorgi, M., Hanifepour, M., & Khosravi, H. (2021). Temporal changes in meteorological-hydrological drought (Case study: Guilan Province).
Water and Soil Management and Modeling,
1 (2), 1-13. [In Persian]
https://doi.org/10.22098/mmws.2021.1215
Kolanek, A., Szymanowski, M., & Raczyk, A. (2021). Human Activity Affects Forest Fires: The Impact of Anthropogenic Factors on the Density of Forest Fires in Poland. Forests, 12, 728. https://doi.org/10.3390/f12060728
Land use plan of Guilan Province. (2016). Management and Planning Organization (MPO) of Guilan Province. [In Persian]
Mauri, E., Hernández Paredes, E., Núñez Blanco, I., & García Feced, C. (2023). Key Recommendations on Wildfire Prevention in the Mediterranean.
European Forest Institute,10.
https://doi.org/10.36333/rs6
Meteorological Quarterly of the Guilan Province. (2019). General Meteorological Department of Guilan Province. [In Persian]
Mohammad Hasani Lor, S., Vafakhah, M., & Pourghasemi, H. R. (2016).
Determining the land use area of Gilan Province using supervised classification. Paper presented of the 2th National Conference on Passive Defense in Agriculture, Natural Resources and Environment with Sustainable Development Approach, Tehran.[In Persian]
https://civilica.com/doc/567112
Narayanaraj, G., & Wimberly, M. C. (2012). Influences of forest roads on the spatial patterns of human- and lightning-caused wildfire ignitions Applied Geography. Applied Geography, 32(2), 878-888. https://doi.org/10.1016/j.apgeog.2011.09.004
Nelson Jr, R. M. (2000). Prediction of diurnal change in 10-h fuel stick moisture content.
Canadian Journal of Forest Research,
30(7), 1071-1087.
https://doi.org/10.1139/x00-032
Okano, Y., & Yamano, H. (2015). Forest fire propagation simulations for a risk assessment methodology development for a nuclear power plant.
Case Studies in Fire Safety,
4, 1-10.
https://doi.org/10.1016/j.csfs.2015.05.001
Oliveira, S., Rocha, J., & Sá, A. (2021). Wildfire risk modeling. Current Opinion in Environmental Science & Health, 23, 100274. https://doi.org/10.1016/j.coesh.2021.100274
Parisien, M. C., Dawe, D. A., Miller, C., Stockdale, C. A., & Armitage, O. B. (2019). Applications of simulation-based burn probability modelling: A review.
International Journal of Wildland Fire,
28, 913-926.
https://doi.org/10.1071/WF19069
Ratcliff, F., Rao, D., Barry, S., Dewees, S., Macaulay, L., Larsen, R., … & Forero, L. (2022). Cattle grazing reduces fuel and leads to more manageable fire behavior.
California Agriculture,
76(2), 60-69.
https://doi.org/10.3733/ca.2022a0011
Rothermel, R. C. (1972). A mathematical model for predicting fire spread in wildland fuels (Vol. 115). Intermountain Forest & Range Experiment Station, Forest Service, US Department of Agriculture.
Sá, A. C. L., Aparicio, B. A., Benali, A., Bruni, C., Salis, M., Silva, F., … & Pereira, J. (2022). Coupling wildfire spread simulations and connectivity analysis for hazard assessment: a case study in Serra da Cabreira, Portugal.
Natural Hazards and Earth System Sciences,
22, 3917–3938.
https://doi.org/10.5194/nhess-22-3917-2022
Salis, M., Arca, B., Del Giudice, L., Palaiologou, P., Alcasena-Urdiroz, F., Ager, A., … & Duce, P. (2021). Application of simulation modeling for wildfire exposure and transmission assessment in Sardinia, Italy.
International Journal of Disaster Risk Reduction,
58,102189.
https://doi.org/10.1016/j.ijdrr.2021.102189
Scott, J. H., & Burgan, R. E. (2005). Standard Fire Behavior Fuel Models : A Comprehensive Set for Use with Rothermel’ S Surface Fire Spread Model. US Department of Agriculture, Forest Service, Rocky Mountain Research Station.
Scott, J. H., Thompson, M. P., & Calkin, D. E. (2013). A wildfire risk assessment framework for land and resource management. USDA Forest Service, Rocky Mountain Research Paper RMRS-GTR-315.
Shi, C., & Zhang, F. (2023). A Forest Fire Susceptibility Modeling Approach Based on Integration Machine Learning Algorithm.
Forests,
14, 1506.
https://doi.org/10.3390/f14071506
Statistical Yearbook of Guilan Province. (2019). Guilan Province Governor's Planning Office, Office of Statistics and Information GIS(2011-2018). .[In Persian]
Teimouri, M., & Kornejady, A. (2023). Evaluating Fire Hazard Potentials using Fuzzy Analytic Hierarchy Process and Logistic Regression Approaches in Golestan National Park.
Journal of Geography and Environmental Hazards,
12(3), 171-191. [In Persian]
https://doi.org/10.22067/geoeh.2023.79999.1313
Twidwell, D., West, A. S., Hiatt, W. B., Ramirez, A., Winter, J. T., Engle, D. M., … & Carlson, J. D. (2016). Plant Invasions or Fire Policy: Which Has Altered Fire Behavior More in Tallgrass Prairie?.
Ecosystems, 19, 356–368.
https://doi.org/10.1007/s10021-015-9937-y
Wollstein, K., Creutzburg, M. K., Dunn, C., Johnson, D. D., O'Connor, C., & Boyd, C. S. (2022). Toward Integrated Fire Management to Promote Ecosystem Resilience.
Rangelands, 44(3), 227-234.
https://doi.org/10.1016/j.rala.2022.01.001
Xofis, P., Konstantinidis, P., Papadopoulos, I., & Tsiourlis, G. (2020). Integrating Remote Sensing Methods and Fire Simulation Models to Estimate Fire Hazard in a South-East Mediterranean Protected Area.
Fire,
3, 31.
https://doi.org/10.3390/fire3030031
Send comment about this article