Investigating the Accuracy and Efficiency of Hydrological Re-Analyzed Models in Estimating the Evaporation Rate from Dam Reservoirs (Case Study: Yamchi Dam, Ardabil)

Document Type : Research Article

Authors

1 M.Sc. Student in Civil Engineering-Water Resource Management and Engineering, Department of Civil Engineering, University of Mohaghegh Ardabili, Ardabil, Iran

2 Associate Professor, Department. of Civil Engineering, Faculty of Engineering, University of Mohaghegh Ardabili, Ardabil, Iran

3 Assistant Professor, Department of Civil Engineering, Faculty of Technical and Engineering of Marand, University of Tabriz, Iran

Abstract

In this study, the efficiency of hydrological re-analyzed models SWBM, HTESSEL, HBV-SIMREG, Ensemble, and LISFLOOD in estimating the rate of evaporation from the reservoir of Yamchi dam in Ardabil was investigated. The evaporation values obtained from the re-analyzed models were validated using the findings of Penman's analytical equation and the values of eight experimental models. In addition to the methods, the accuracy of re-analyzed models was evaluated using the feed forward neural network. The resulting feed forward neural network was designed in two stages with two and three hidden layers and each was evaluated in three different combinations of network inputs. According to the findings, the values generated from the Penman analytical model had a correlation coefficient of 0.9 with the data received from studied area's evaporation pan. Among the hydrological re-analyzed models, the highest correlation with received data from study area's evaporation pan was related to LISFLOOD model with a value of 0.87 and RMSE equal to 1.37 mm per day. The obtained results showed that the mean absolute error for the LISFLOOD model with the data provided from the study area's evaporation pan was 1.14 mm per day, on a daily time scale. The results showed that in the absence of area data, re-analyzed hydrological model can readily offer the best estimate of evaporation from the reservoirs’ free surface on a monthly scale.

Graphical Abstract

Investigating the Accuracy and Efficiency of Hydrological Re-Analyzed Models in Estimating the Evaporation Rate from Dam Reservoirs (Case Study: Yamchi Dam, Ardabil)

Keywords


آبکار، علی جان‌؛ حبیب نژاد،‌ محمود‌؛ سلیمانی،‌ کریم؛‌ نقوی،‌ هرمزد؛ ۱۳۹۳. حساسیت مدل ریز‌مقیاس‌نمایی SDSM  به داده‌های باز تحلیل شده در مناطق خشک. خشکبوم. 27-11. (2)4. http://aridbiom.yazd.ac.ir/article_616.html
خوشحال جهرمی، ‌فاطمه؛ ۱۳۹۴. تعیین بهترین روش تجربی برآورد تبخیر از سطح آزاد آب در دو اقلیم متفاوت ازاستان فارس (مطالعه موردی شهرستان آباده و لار). سومین همایش سراسری کشاورزی و منابع طبیعی پایدار. تهران. https://civilica.com/doc/416558/
عزیزیان،‌ اصغر؛ بهمن آبادی، بهاره؛ جناب،‌ مهنوش؛ ۱۳۹۹. برآورد تبخیروتعرق پتانسیل با استفاده از مدلهای بازتحلیل شده مبتنی بر مشاهدات جهانی در اقلیم‌های مختلف ایران. نشریه حفاظت منابع آب و خاک (علمی - پژوهشی). ۱۸-۱، (۱) ۱۰. https://wsrcj.srbiau.ac.ir/article_17322.html
کوهی، سکینه؛ عزیزیان، اصغر؛ بروکا، لوکا؛ ۱۳۹۹. بررسی کارایی منابع تبخیر و تعرق بازتحلیل شده برای واسنجی مدل هیدرولوژیکی توزیعی با رویکرد کاربرد در حوضه‌های فاقد آمار. تحقیقات آب و خاک ایران (علوم کشاورزی ایران)‌. ۵۱ (۵). ۱۱۹۵-۱۲۱۰. https://ijswr.ut.ac.ir/article_74834.html
نجفوند دریکوندی، مهدی؛ اسلامی، حسین؛ ۱۳۹۵. مقایسه روش‌های تجربی برآورد تبخیر از سطح آزاد آب (مطالعه موردی: سد تنظیمی دز). فصلنامه علمی تخصصی مهندسی آب. ۷۳-۶۵، (۲) ۴. https://jwe.shoushtar.iau.ir/article_531785.html
یزدانی، وحید؛ قهرمان، بیژن؛ داوری، کامران؛ ۱۳۹۰. تعیین بهترین روش تجربی برآورد تبخیر از سطح آزاد در اراضی شالیزاری آمل بر پایه آنالیز حساسیت و مقایسه آن با نتایج شبکه عصبی مصنوعی، مجله پژوهش آب ایران.  (۷) ۴، ۴۷. https://iwrj.sku.ac.ir/article_11124.html
 
Bisselink, B., Zambrano-Bigiarini, M., Burek, P., & de Roo, A., 2016. Assessing the role of uncertain precipitation estimates on the robustness of hydrological model parameters under highly variable climate conditions. Journal of Hydrology: Regional Studies, 8, 112–129 https://doi.org/10.1016/j.ejrh.2016.09.003
Dembélé, M., Ceperley, N., Zwart, S. J., Salvadore, E., Mariethoz, G., & Schaefli, B., 2020. Potential of satellite and reanalysis evaporation datasets for hydrological modelling under various model calibration strategies. Advances in Water Resources, 143, 103667. https://doi.org/10.1016/j.advwatres.2020.103667
Koukoula, M., Nikolopoulos, E. I., Dokou, Z., & Anagnostou, E. N., 2020. Evaluation of Global Water Resources Reanalysis Products in the Upper Blue Nile River Basin. Journal of Hydrometeorology, 21(5), 935–952. https://doi.org/10.1175/JHM-D-19-0233.1
Lu, J., Wang, G., Chen, T., Li, S., Hagan, D. F. T., Kattel, G., Su, B., 2021. A harmonized global land evaporation dataset from model-based products covering 1980–2017. Earth System Science Data, 13(12), 5879–5898.  https://doi.org/10.5194/essd-13-5879-2021
Yang, X., Yong, B., Ren, L., Zhang, Y., & Long, D., 2017. Multi-scale validation of GLEAM evapotranspiration products over China via ChinaFLUX ET measurements. International Journal of Remote Sensing, 38(20), 5688–5709.
CAPTCHA Image