Aguilera, E., Lassaletta, L., Gattinger, A., & Gimeno, B. S. (2013). Managing soil carbon for climate change mitigation and adaptation in Mediterranean cropping systems: A meta-analysis.
Agriculture, Ecosystems & Environment,
168, 25-36.
https://doi.org/10.1016/j.agee.2013.02.003
Ahmad Dar, J., & Somaiah, S. (2015). Altitudinal variation of soil organic carbon stocks in temperate forests of Kashmir Himalayas, India.
Environmental Monitoring and Assessment,
187, 1-15.
https://doi.org/10.1007/s10661-014-4204-9
Banday, M., Bhardwaj, D. R., & Pala, N. A. (2019). Influence of forest type, altitude and NDVI on soil properties in forests of North Western Himalaya, India.
Acta Ecologica Sinica,
39(1), 50-55.
https://doi.org/10.1016/j.chnaes.2018.06.001
Bangroo, S. A., Najar, G. R., & Rasool, A. (2017). Effect of altitude and aspect on soil organic carbon and nitrogen stocks in the Himalayan Mawer Forest Range.
Catena,
158, 63-68.
https://doi.org/10.1016/j.catena.2017.06.017
Bhattacharyya, R., Prakash, V., Kundu, S., Srivastva, A. K., Gupta, H. S., & Mitra, S. (2010). Long term effects of fertilization on carbon and nitrogen sequestration and aggregate associated carbon and nitrogen in the Indian sub-Himalayas.
Nutrient Cycling in Agroecosystems,
86, 1-16.
https://doi.org/10.1007/s10705-009-9270-y
Cardinael, R., Chevallier, T., Cambou, A., Béral, C., Barthès, B. G., Dupraz, C., ... & Chenu, C. (2017). Increased soil organic carbon stocks under agroforestry: A survey of six different sites in France.
Agriculture, Ecosystems & Environment,
236, 243-255.
https://doi.org/10.1016/j.agee.2016.12.011
Chai, T., & Draxler, R. R. (2014). Root mean square error (RMSE) or mean absolute error (MAE)?–Arguments against avoiding RMSE in the literature.
Geoscientific Model Development,
7(3), 1247-1250.
https://doi.org/10.5194/gmd-7-1247-2014
Choudhury, B. U., Fiyaz, A. R., Mohapatra, K. P., & Ngachan, S. (2016). Impact of land uses, agrophysical variables and altitudinal gradient on soil organic carbon concentration of North‐Eastern Himalayan Region of India.
Land Degradation & Development,
27(4), 1163-1174.
https://doi.org/10.1002/ldr.2338
Cohen, I., Huang, Y., Chen, J., Benesty, J., Benesty, J., Chen, J., ... & Cohen, I. (2009). Pearson correlation coefficient.
Noise reduction in speech processing, 1-4.
https://doi.org/10.1007/978-3-642-00296-0_5
Dahlgren, R. A., Boettinger, J. L., Huntington, G. L., & Amundson, R. G. (1997). Soil development along an elevational transect in the western Sierra Nevada, California.
Geoderma,
78(3-4), 207-236.
https://doi.org/10.1016/S0016-7061(97)00034-7
Deng, L., Liu, G. B., & Shangguan, Z. P. (2014). Land‐use conversion and changing soil carbon stocks in C hina's ‘Grain‐for‐Green’Program: a synthesis.
Global Change Biology,
20(11), 3544-3556.
https://doi.org/10.1111/gcb.12508
Dieleman, W. I., Venter, M., Ramachandra, A., Krockenberger, A. K., & Bird, M. I. (2013). Soil carbon stocks vary predictably with altitude in tropical forests: Implications for soil carbon storage.
Geoderma,
204, 59-67.
https://doi.org/10.1016/j.geoderma.2013.04.005
Don, A., Seidel, F., Leifeld, J., Kätterer, T., Martin, M., Pellerin, S., ... & Chenu, C. (2024). Carbon sequestration in soils and climate change mitigation—Definitions and pitfalls.
Global Change Biology,
30(1), e16983.
https://doi.org/10.1111/gcb.16983
Dwivedi, D., Riley, W. J., Torn, M. S., Spycher, N., Maggi, F., & Tang, J. Y. (2017). Mineral properties, microbes, transport, and plant-input profiles control vertical distribution and age of soil carbon stocks.
Soil Biology and Biochemistry,
107, 244-259.
https://doi.org/10.1016/j.soilbio.2016.12.019
Fallahi, J., Rezvani Moghaddam, P., Nassiri Mahallati, M., & Behdani, M. A. (2013). Validation of RothC model for evaluation of carbon sequestration in a restorated ecosystem under two different climatic scenarios.
Water and Soil,
27(3), 656-668.
https://doi.org/10.22067/jsw.v0i0.26092
Field, A. (2024). Discovering statistics using IBM SPSS statistics. Sage publications limited.
Gee, G. W. & Or, D. (2002)
Particle Size Analysis. In: Dane, J.H. and Topp, G.C., Eds., Methods of Soil Analysis, Part 4, Physical Methods, Soils Science Society of America, Book Series No. 5, Madison, 255-293.
https://doi.org/10.2136/sssabookser5.4.c12
Jebari, A., Del Prado, A., Pardo, G., Rodriguez Martin, J. A., & Álvaro‐Fuentes, J. (2018). Modeling regional effects of climate change on soil organic carbon in Spain.
Journal of Environmental Quality,
47(4), 644-653.
https://doi.org/10.2134/jeq2017.07.0294
Kashi Zenouzi, L., Shafiee, B., & Jafari, A. A. (2016). Investigating the Effect of Some Environmental Factors on Organic Carbon in ZilberChay Watershed.
Journal of Water and Soil Science,
20(76), 207-218. [In Persian]
http://dx.doi.org/10.18869/acadpub.jstnar.20.76.207
Kaveh, A., Mahdian, M. H., Parvizi, Y., Sokouti Oskouei, R., & Masihabadi, M. H. (2014). Investigating effects of topography, soil and climate factors on soil organic carbon storage in drylands of Kermanshah Province.
Desert Management,
2(4), 51-65. [In Persian]
https://doi.org/10.22034/jdmal.2014.16659
Kazemi Rad, L., & Mohammadi, H. (2016). Climate change assessment by using LARS-WG model in Gilan Province (Iran).
Journal of Geography and Environmental Hazards,
4(4), 55-74. [In Persian]
https://doi.org/10.22067/geo.v4i4.38892
Köchy, M., Don, A., van der Molen, M. K., & Freibauer, A. (2015). Global distribution of soil organic carbon–Part 2: Certainty of changes related to land use and climate.
Soil,
1(1), 367-380.
https://doi.org/10.5194/soil-1-367-2015
Komarov, A., Chertov, O., Bykhovets, S., Shaw, C., Nadporozhskaya, M., Frolov, P., ... & Zubkova, E. (2017). Romul_Hum model of soil organic matter formation coupled with soil biota activity. I. Problem formulation, model description, and testing.
Ecological Modelling,
345, 113-124.
https://doi.org/10.1016/j.ecolmodel.2016.08.007
Krause, P., Boyle, D. P., & Bäse, F. (2005). Comparison of different efficiency criteria for hydrological model assessment.
Advances in Geosciences,
5, 89-97.
https://doi.org/10.5194/adgeo-5-89-2005
Li, J., Shi, J., Zhang, D. D., Yang, B., Fang, K., & Yue, P. H. (2017). Moisture increase in response to high-altitude warming evidenced by tree-rings on the southeastern Tibetan Plateau.
Climate Dynamics,
48, 649-660.
https://link.springer.com/article/10.1007/s00382-016-3101-z
Li, P., Wang, Q., Endo, T., Zhao, X., & Kakubari, Y. (2010). Soil organic carbon stock is closely related to aboveground vegetation properties in cold-temperate mountainous forests.
Geoderma,
154(3-4), 407-415.
https://doi.org/10.1016/j.geoderma.2009.11.023
Mansuri, E., Karimi, A., Emamy, H., & Parvizi, Y. (2017). Investigation the Factors affecting soil organic carbon along a gradient climate in Kermanshah Province.
Journal of Natural Environment,
70(1), 197-210.
https://doi.org/10.22059/jne.2017.134974.1031
Muñoz-Rojas, M., Abd-Elmabod, S. K., Zavala, L. M., De la Rosa, D., & Jordán, A. (2017). Climate change impacts on soil organic carbon stocks of Mediterranean agricultural areas: A case study in Northern Egypt.
Agriculture, Ecosystems & Environment,
238, 142-152.
https://doi.org/10.1016/j.agee.2016.09.001
Nieto, O. M., Castro, J., & Fernández-Ondoño, E. (2013). Conventional tillage versus cover crops in relation to carbon fixation in Mediterranean olive cultivation.
Plant and Soil,
365, 321-335.
https://doi.org/10.1007/s11104-012-1395-0
Njeru, C. M., Ekesi, S., Mohamed, S. A., Kinyamario, J. I., Kiboi, S., & Maeda, E. E. (2017). Assessing stock and thresholds detection of soil organic carbon and nitrogen along an altitude gradient in an east Africa mountain ecosystem.
Geoderma Regional,
10, 29-38.
https://doi.org/10.1016/j.geodrs.2017.04.002
Papiernik, S. K., Lindstrom, M. J., Schumacher, T. E., Schumacher, J. A., Malo, D. D., & Lobb, D. A. (2007). Characterization of soil profiles in a landscape affected by long-term tillage.
Soil and Tillage Research,
93(2), 335-345.
https://doi.org/10.1016/j.still.2006.05.007
Ponce-Hernandez, R., Koohafkan, P., & Antoine, J. (2004). Assessing carbon stocks and modelling win-win scenarios of carbon sequestration through land-use changes (Vol. 1). Food & Agriculture Org.
Qiu, W., Li, Q., Lei, Z. K., Qin, Q. H., Deng, W. L., & Kang, Y. L. (2013). The use of a carbon nanotube sensor for measuring strain by micro-Raman spectroscopy.
Carbon,
53, 161-168.
https://doi.org/10.1016/j.carbon.2012.10.043
Quideau, S. A. (2002). Organic matter accumulation. Encyclopedia of Soil Science, 26, 1-4.
Ramesh, T., Manjaiah, K. M., Tomar, J. M. S., & Ngachan, S. V. (2013). Effect of multipurpose tree species on soil fertility and CO 2 efflux under hilly ecosystems of Northeast India.
Agroforestry Systems,
87, 1377-1388.
https://doi.org/10.1007/s10457-013-9645-6
Rampazzo Todorovic, G., Stemmer, M., Tatzber, M., Katzlberger, C., Spiegel, H., Zehetner, F., & Gerzabek, M. H. (2010). Soil‐carbon turnover under different crop management: Evaluation of RothC‐model predictions under Pannonian climate conditions.
Journal of Plant Nutrition and Soil Science,
173(5), 662-670.
https://doi.org/10.1002/jpln.200800311
Rousta, M. J., Soleimanpour, S. M., Enayati, M., & Pakparvar, M. (2022). Effect of vegetation type and soil chemical properties on the organic carbon content in the soil of flood spreading fields of Kowsar station.
https://doi.org/10.52547/ifej.10.19.171
Senthilkumar, S., Kravchenko, A. N., & Robertson, G. P. (2009). Topography influences management system effects on total soil carbon and nitrogen.
Soil Science Society of America Journal,
73(6), 2059-2067.
https://doi.org/10.2136/sssaj2008.0392
Shakiba, A., & Rahnama, M. (2003). The impact of climate change on soil carbon variations. In
Third Regional Conference on Climate Change, Meteorological Organization, Isfahan.[In Persian]
https://civilica.com/doc/12499
Shirato, Y., & Yokozawa, M. (2005). Applying the Rothamsted Carbon Model for long-term experiments on Japanese paddy soils and modifying it by simple tuning of the decomposition rate.
Soil Science & Plant Nutrition,
51(3), 405-415.
https://doi.org/10.1111/j.1747-0765.2005.tb00046.x
Singh, S. K., Pandey, C. B., Sidhu, G. S., Sarkar, D., & Sagar, R. (2011). Concentration and stock of carbon in the soils affected by land uses and climates in the western Himalaya, India.
Catena,
87(1), 78-89.
https://doi.org/10.1016/j.catena.2011.05.008
Sinoga, J. D. R., Pariente, S., Diaz, A. R., & Murillo, J. F. M. (2012). Variability of relationships between soil organic carbon and some soil properties in Mediterranean rangelands under different climatic conditions (South of Spain).
Catena,
94, 17-25.
https://doi.org/10.1016/j.catena.2011.06.004
Smith, P., Smith, J. U., Powlson, D. S., McGill, W. B., Arah, J. R. M., Chertov, O. G., ... & Whitmore, A. P. (1997). A comparison of the performance of nine soil organic matter models using datasets from seven long-term experiments.
Geoderma,
81(1-2), 153-225.
https://doi.org/10.1016/S0016-7061(97)00087-6
Soleimani, A., Hosseini, S. M., Bavani, A. R. M., Jafari, M., & Francaviglia, R. (2017). Simulating soil organic carbon stock as affected by land cover change and climate change, Hyrcanian forests (northern Iran).
Science of The Total Environment,
599, 1646-1657.
https://doi.org/10.1016/j.scitotenv.2017.05.077
Su, X., Yan, X., & Tsai, C. L. (2012). Linear regression.
Wiley Interdisciplinary Reviews: Computational Statistics,
4(3), 275-294.
https://doi.org/10.1002/wics.1198
Walkley, A., & Black, I. A. (1934). An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method.
Soil Science,
37(1), 29-38.
http://dx.doi.org/10.1097/00010694-193401000-00003
Wan, Y., Lin, E., Xiong, W., & Guo, L. (2011). Modeling the impact of climate change on soil organic carbon stock in upland soils in the 21st century in China.
Agriculture, Ecosystems & Environment,
141(1-2), 23-31.
https://doi.org/10.1016/j.agee.2011.02.004
Wang, J., Wang, X., Xu, M., Feng, G., Zhang, W., & Lu, C. A. (2015). Crop yield and soil organic matter after long-term straw return to soil in China.
Nutrient Cycling in Agroecosystems,
102, 371-381.
https://doi.org/10.1007/s10705-015-9710-9
Yang, Y., Mohammat, A., Feng, J., Zhou, R., & Fang, J. (2007). Storage, patterns and environmental controls of soil organic carbon in China.
Biogeochemistry,
84, 131-141.
https://doi.org/10.1007/s10533-007-9109-z
Yokozawa, M., Shirato, Y., Sakamoto, T., Yonemura, S., Nakai, M., & Ohkura, T. (2010). Use of the RothC model to estimate the carbon sequestration potential of organic matter application in Japanese arable soils.
Soil Science & Plant Nutrition,
56(1), 168-176.
https://doi.org/10.1111/j.1747-0765.2009.00422.x
Zhang, J., Bei, S., Li, B., Zhang, J., Christie, P., & Li, X. (2019). Organic fertilizer, but not heavy liming, enhances banana biomass, increases soil organic carbon and modifies soil microbiota.
Applied Soil Ecology,
136, 67-79.
https://doi.org/10.1016/j.apsoil.2018.12.017
Zhang, Y., Ai, J., Sun, Q., Li, Z., Hou, L., Song, L., ... & Shao, G. (2021). Soil organic carbon and total nitrogen stocks as affected by vegetation types and altitude across the mountainous regions in the Yunnan Province, south-western China.
Catena,
196, 104872.
https://doi.org/10.1016/j.catena.2020.104872
Zhao, Y. G., Liu, X. F., Wang, Z. L., & Zhao, S. W. (2015). Soil organic carbon fractions and sequestration across a 150-yr secondary forest chronosequence on the Loess Plateau, China.
Catena,
133, 303-308.
https://doi.org/10.1016/j.catena.2015.05.028
Zhu, B., Wang, X., Fang, J., Piao, S., Shen, H., Zhao, S., & Peng, C. (2010). Altitudinal changes in carbon storage of temperate forests on Mt Changbai, Northeast China.
Journal of Plant Research,
123, 439-452.
https://doi.org/10.1007/s10265-009-0301-1
Send comment about this article