Multidecadal Investigation of Integrated Surface Ultra-Violet Radiation and its Consistency with Total Column Ozone and Cloudiness

Document Type : Research Article

Authors

1 PhD Candidate in Agrometeorology, Bu-Ali Sina University, Hamedan, Iran

2 Professor in Meteorology, Bu-Ali Sina University, Hamedan, Iran

Abstract

Solar radiation that reaches the Earth's surface has a significant impact on human health, agricultural productivity, terrestrial, aquatic ecosystems, and air quality. The difficulties from shortage of experimental field data motivate the researchers to rely on other database such as satellites and reanalysis radiation data. In the present work, the integrated daily solar ultraviolet-visible radiation (total integral of ultraviolet-visible radiation from 200 to 440 nm) was extracted from the ERA5 reanalysis database during the historical period of 1979-2020. Moreover, Total Column Ozone (TCO), and the Percentage of Cloudiness (CF) were obtained from the same database. The study area was divided into eight clusters by Analytic Hierarchy Process (AHP) method and trend analysis was performed using Mann-Kendall test. Results indicated that mean annual integrated UV-VIS 200-440 radiation of north and northwest of the country has experienced a positive trend during the last four decades, but no significant trend was detected for other parts of the country. The study of the TCO also showed that in all eight clusters, the TCO trend during 1979 to 2000 has experienced a significant decreasing trend, but has increased from 2001 onward. The linear regression equations between UV-VIS200-440 with TCO and CF were also constructed for all time scales (monthly, seasonal, annual) and the corresponding coefficients of correlation were calculated accordingly. The maximum annual correlation (r) was found between UV-VIS200-440 and the cloudiness (0.81). However, the highest r between UV-VIS200-440 and the TCO was 0.25. This result highlights that the variation in cloudiness plays more important role on determination of surface UV radiation than the changes in ozone concentration. This study did not investigated the influence of aerosol optical depth on UV radiation. This issue demands further investigation for evaluating the impact of aerosols on incoming surface UV radiation reaching the ground.

Graphical Abstract

Multidecadal Investigation of Integrated Surface Ultra-Violet Radiation and its Consistency with Total Column Ozone and Cloudiness

Keywords

Main Subjects


- رستم پور، نیما؛ الماسی، تینوش؛ رستم پور، معصومه؛ بیات، حسنا؛ کریمی، سعیده؛ 1391. بررسی میزان شدت پرتوهای فرابنفش خورشیدی نوع A در شهر همدان. مجله دانشگاه علوم پزشکی و خدمات بهداشتی درمانی همدان. شماره 4، 69-74.                                                                     https://www.sid.ir/paper/17263/fa.
- سبزی پرور، علی‌اکبر، سیف زاده مؤمن سرایی، علیرضا؛ 1400. برآورد تابش فرابنفش تجمعی روزانه UVA و سازگاری آن با برخی عوامل مؤثر - مطالعه موردی: مناطق مرکزی ایران. نشریه اطلاعات جغرافیایی سپهر، دوره 30، شماره 118، 169-184.                                        https://doi.org/10.22131/sepehr.2021.246148
- سبزی پرور، علی‌اکبر، سیف زاده مؤمن سرایی، علیرضا؛ 1400. واکاوی تأثیر ابرناکی بر تابش فرابنفش تجمعی روزانه UVB در مناطق خشک و نیمه‌خشک ایران. آب‌وخاک، دوره 35، شماره 2، 285-297.
- فرج‌زاده اصل، منوچهر؛ قویدل رحیمی، یوسف، اردشیری کلهر، مهدی؛ 1393. تحلیل تغییرات تابش فرابنفش در منطقه­ اصفهان. نشریه تحلیل فضایی مخاطرات محیطی. سال اول، شماره پیاپی 2، 93-105.
- موقری، علیرضا؛ خسروی، محمود؛ 1393. محاسبه، ارزیابی و تحلیل توزیع مکانی شاخص پرتو فرابنفش در گستره ایران. نشریه تحقیقات کاربردی علوم جغرافیایی، دوره 14، شماره ۳۴، ۲۱۳-۱۹۵.
 
- Aun M, Eerme K, Ansko I, Aun, M., 2019. Daily, seasonal, and annual characteristics of UV radiation and its influencing factors in Tõravere, Estonia, 2004–2016. Theoretical and Applied Climatology, 138: 887-897. https://doi.org/10.1007/s00704-019-02865-1.
- Banerjee A, Fyfe JC, Polvani LM, Waugh D, Chang KL., 2020. A pause in Southern Hemisphere circulation trends due to the Montreal Protocol. Nature, 579: 544-548. https://doi.org/10.1038/s41586-020-2120-4.
- Bernhard G, Stierle S., 2020. Trends of UV radiation in Antarctica. Atmosphere, 8: 795. https://doi.org/10.3390/atmos11080795.
- Chen X, Zhong B, Huang F, Wang X, Sarkar S, Jia S, Deng X, Chen D, Shao M., 2020. The role of natural factors in constraining long-term tropospheric ozone trends over Southern China. Atmospheric Environment, 220:117060. https://doi.org/10.1016/j.atmosenv.2019.117060.
- Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda MA, Balsamo G, Bauer DP, Bechtold P., 2011. The ERA‐Interim reanalysis: Configuration and performance of the data assimilation system. Quarterly Journal of the Royal Meteorological Society; 137:553-97. https://doi.org/10.1002/qj.828.
- Douglass A, Fioletov V, Godin-Beekmann S, Müller R, Stolarski RS, Webb A, Yang ES., 2011. Stratospheric ozone and surface ultraviolet radiation. World Meteorological Organization. 1-80. https://orbi.uliege.be/handle/2268/163132.
- Du Preez DJ, Ajtić JV, Bencherif H, Bègue N, Cadet JM, Wright CY., 2019. Spring and summer time ozone and solar ultraviolet radiation variations over Cape Point, South Africa. In Annales Geophysicae, 37: 129-141. https://doi.org/10.5194/angeo-37-129-2019.
- Fountoulakis I, Diémoz H, Siani AM, Laschewski G, Filippa G, Arola A, Zerefos CS., 2020. Solar UV irradiance in a changing climate: Trends in Europe and the significance of spectral monitoring in Italy. Environments, 7: 1. https://doi.org/10.3390/environments7010001.
- Fountoulakis I, Zerefos CS, Bais AF, Kapsomenakis J, Koukouli ME, Ohkawara N, Webb AR., 2018. Twenty-five years of spectral UV-B measurements over Canada, Europe, and Japan: Trends and effects from changes in ozone, aerosols, clouds, and surface reflectivity. Comptes Rendus Geoscience, 7: 393-402. https://doi.org/10.1016/j.crte.2018.07.011.
- Glandorf M, Arola A, Bais A, Seckmeyer G., 2005. Possibilities to detect trends in spectral UV irradiance. Theoretical and applied climatology, 81: 33-44. https://doi.org/10.1007/s00704-004-0109-9.
- Raksasat R, Sri-Iesaranusorn P, Pemcharoen J, Laiwarin P, Buntoung S, Janjai S, Chuangsuwanich E., 2021. Accurate surface ultraviolet radiation forecasting for clinical applications with deep neural network. Scientific reports, 11: 1-12. https://doi.org/10.1038/s41598-021-84396-2.
- Sabziparvar AA, Shine KP, Forster PM., 1999. A model‐derived global climatology of UV irradiation at the earth's surface. Photochemistry and photobiology, 69:193-202. https://doi.org/10.1111/j.1751-1097.1999.tb03273.x.
- Smedley AR, Rimmer JS, Moore D, Toumi R, Webb AR., 2012. Total ozone and surface UV trends in the United Kingdom: 1979–2008. International journal of climatology, 32: 338-346. https://doi.org/10.1002/joc.2275.
- Szeląg ME, Sofieva VF, Degenstein D, Roth C, Davis S, Froidevaux L., 2020. Seasonal stratospheric ozone trends over 2000–2018 derived from several merged data sets.  Atmospheric Chemistry and Physics, 20: 7035-7047. https://doi.org/10.5194/acp-20-7035-2020.
- Williamson CE, Zepp RG, Lucas RM, Madronich S, Austin AT, Ballaré CL, Bornman JF., 2014. Solar ultraviolet radiation in a changing climate. Nature Climate Change, 4: 434-441. https://doi.org/10.1038/nclimate2225.
- WMO, UNITED NATIONS ENVIRONMENT PROGRAMME., 2007, Scientific Assessment of Ozone Depletion: 2006. Global Ozone Research and Monitoring Project-Report No. 50 https://wmo.int/pages/prog/arep/gaw/ozone_2006/ozone_asst_report.html.
- Xia Y, Hu Y, Huang Y, Bian J, Zhao C., 2021. Stratospheric ozone loss-induced cloud effects lead to less surface ultraviolet radiation over the Siberian Arctic in spring. Environmental Research Letters, 1611: 084057. https://doi.org/10.1088/1748-9326/ac18e9.
 
CAPTCHA Image