Projection of Precipitation using CMIP6 Models Until the End of the 21st Century in the Northwest of Iran

Document Type : Research Article

Authors

1 Professor in Climatology, Faculty of Planning and Environmental Sciences, University of Tabriz, Tabriz, Iran

2 Assistant Professor in Climatology, Faculty of Planning and Environmental Sciences, University of Tabriz, Tabriz, Iran

3 PhD in Climatology, Faculty of Planning and Environmental Sciences, University of Tabriz, Tabriz, Iran

Abstract

Precipitation is the main component of the hydrological cycle, which is very important in many studies, including those focusing on management of irrigation and drainage systems, crop performance, environmental issues, floods, droughts, etc. Therefore, this study eveluated seven GCMs models of Coupled Model Intercomparison Project phase 6 (CMIP6) regarding the simulation and projection of precipitation changes in the northwest of Iran under three scenarios of SSP in three periods (2021-2050, 2051-2080, 2081-2100) and compared them to the historical period (2014-1985). The trend of precipitation changes was calculated using Mann-Kendall test and Sen’s slope estimator. The Linear Scaling Bias Correction (LSBC) was used to downscaling the GCMs data and the validity of different models was evaluated using RMSE, MAE and R2 indices. The results of performance evaluation of CMIP6 models showed that among the studied models, MPI-ESM1-2-LR model with an average R2 of 0.86 and RMSE equal to 19.7 at the regional level were more accurate than other models in the simulation of precipitation. The results of projection also showed that precipitation according to SSP1-2.6 scenario will increase by 2.6% in the next three periods and on average in the end of 21st century and at most stations it is significant at the level of 0.01%. But according to SSP3-7.0 and SSP5-8.5 scenarios, the amount of precipitation will decrease by 14.5% and 3.6% in the end of 21st century, respectively, with the highest decrease being related to the rainy areas in the southwest of the region. In general, according to different scenarios, in most of the studied areas, the precipitation trend is decreasing until the end of 21st century, and it is necessary for officials and planners to adopt the required strategies to adapt to the resulting climate change.

Graphical Abstract

Projection of Precipitation using CMIP6 Models Until the End of the 21st Century in the Northwest of Iran

Keywords

Main Subjects


- حیدری تاشه کبود، شادیه؛ مفیدی، عباس؛ حیدری تاشه کبود، اکبر؛ 1398. چشم‌انداز تغییرات بارش در شمال غرب ایران با استفاده از مدل­های گردش عمومی جو تحت سناریوهای اقلیمی، جغرافیا و مخاطرات محیطی، 29، 151-133.
- خزائی، محمدرضا؛ تحسین­زاده، نازیلا؛ شرافتی، احمد؛ 1398. تحلیل عدم قطعیت سناریوهای بارش و دمای حوضه سیرا تحت اثر تغییر اقلیم، علوم و مهندسی آبخیزداری ایران، 45، 51-45.
- محمد خورشید دوست، علی؛ ساری صراف، بهروز؛ قرمز چشمه، باقر؛ جعفرزاده، فاطمه؛ 1397. پیش­بینی بارش­های سنگین سواحل جنوبی دریای خزر تحت شرایط تغییر اقلیم در دوره­ ۱۴۰۸ - 1389. مجله علوم و مهندسی آبخیزداری ایران، 42، 129-121.
- زهرائی، اکبر؛ حسینی، سید اسعد؛ 1399. تغییر اقلیم و اثرات آن بر منابع آب، چاپ اول، انتشارات هاوار، ایلام.
- ذهبیون، باقر؛ گودرزی، محمدرضا؛ مساح بوانی، علیرضا؛ 1389. کاربرد مدل SWAT در تخمین رواناب حوضه در دوره‌های آتی تحت تأثیر تغییر اقلیم، نشریه پژوهش‌های اقلیم شناسی، 1و 2، 58-43.
- شائمی، اکبر؛ حبیبی­نوخندان، مجید؛ 1388. گرمایش جهانی و پیامدهای زیستی اکولوژیکی، انتشارات دانشگاه فردوسی مشهد.                                                                           https://www.gisoom.com/book/
- صداقت­کردار، علی؛ فتاحی، ابراهیم؛ 1387. شاخص­های پیش­آگاهی خشک‌سالی در ایران، فصلنامه جغرافیا و توسعه، دانشگاه سیستان و بلوچستان، 11، 76-59.                                         https://ensani.ir/fa/article/
- صلاحی، برومند؛ گودرزی، مسعود؛ حسینی، سید اسعد؛ 1395. پیش­بینی تغییرات دما و بارش در دهه  2050 در حوزه آبخیز دریاچه ارومیه، نشریه مهندسی و مدیریت آبخیز، 4، 438-425.
- عزیزی، قاسم؛ 1383. تغییر اقلیم. تهران، نشر قومس.                                 https://www.gisoom.com/book/
- عزیزی، قاسم؛ صفرزاد، طاهر؛ محمدی، حسین؛ حسنعلی، فرجی سبکبار؛ 1395. ارزیابی و مقایسه داده‌های بازکاوی شده بارش جهت استفاده در ایران. پژوهش‌های جغرافیای طبیعی، 48 (1)، 49-33.
- کثیری، مریم؛ گودرزی، مسعود؛ جانبازقبادی، غلامرضا؛ متولی، صدرالدین؛ 1400. پیش‌نگری تغییرات بارش در سواحل جنوبی دریای خزر تا پایان قرن 21 با استفاده از سناریوهای مختلف واداشت تابشی. مجله آمایش جغرافیایی فضا، 11 (40)، 118-103.                           https://doi.org/10.30488/gps.2020.226852.3226
- مسعودیان، ابوالفضل؛ کیخسروی، محمدصادق؛ رعیت پیشه، فاطمه؛ 1393. معرفی و مقایسه پایگاه داده اسفزاری با پایگاه داده gpcc، gpcp، cmap، فصلنامه تحقیقات جغرافیایی، 12، 88-73. https://www.sid.ir/paper/29987/fa
 
- Cheng, Q., Zhong, F., Wang, P., 2021. Potential linkages of extreme climate events with vegetation and large-scale circulation indices in an endorheic river basin in northwest China. Atmospheric Research, 247, 105256. https://doi.org/10.1016/j.atmosres.2020.105256.
- Ferreira, R N., Nissenbaum, M R., Rickenbach, TH M., 2018. Climate change effects on summertime precipitation organization in the Southeast United States. Atmospheric Research, 214,348- 363. https://doi.org/10.1016/j.atmosres.2018.08.012.
- Horton, D.E., Johnson, N.C., Singh, D., Swain, D.L., Rajaratnam, B., Diffenbaugh, N.S., 2015. Contribution of changes in atmospheric circulation patterns to extreme temperature trends. Nature. 522 (7557), 465–469. https://www.nature.com/articles/nature14550,
- Hu, T.S., Lam, K.C., Ng, S.T., 2001. River flow time series prediction with a range dependent neural network. Hydrological Science Journal, 46, 729-745. http://dx.doi.org/10.1080/02626660109492867.
- Jiang, J., Zhou, T., Chen, X., Zhang, L., 2020.  Future changes in precipitation over Central Asia based on CMIP6 projections, Environ. Res. Lett, 15, 1-4. http://dx.doi.org/10.1088/1748-9326/ab7d03.
- Kendall, M.G. 1975. Rank Correlation Measures, Charles Griffin, London. https://www.scirp.org/reference/ReferencesPapers?ReferenceID=2099295.
- Kay, A. L.; Davies, H. N.; Bell, V. A.; Jones, R. G. 2009 Comparison of uncertainty sources for climate change impacts: flood frequency in England. Climatic Change, 92 (1-2). 41-63. http://dx.doi.org/10.1007/s10584-008-9471-4.
- Lin, J.Y., Cheng,C.T., Chau, K.W., 2006. Using support vector machines for long-term discharge prediction. Hydrological Science Journal, 51, 599-612. https://doi.org/10.1623/hysj.51.4.599.
- Majdi, F., Hosseini, S.A., Karbalaee, A., Kaseri, M., Marjanian, S. 2022. Future projection of precipitation and temperature changes in the Middle East and North Africa (MENA) region based on CMIP6. Theoretical and Applied Climatology, https://doi.org/10.1007/s00704-021-03916-2
- Mendez, M; Maathuis, B; Griggs, D.H; Gamboa, L. F.A., 2020. Performance Evaluation of  Bias Correction Methods for Climate Change Monthly Precipitation Projections over Costa Rica.  Water, 12, 482. http://dx.doi.org/10.3390/w12020482.
- Nilawar, A P., Waikar, M L., 2019. Impacts of climate change on streamflow and sediment concentration under RCP 4.5 and 8.5: A case study in Purna river basin, India. Science of The Total Environment, 2. 2685-2696. http://dx.doi.org/10.1016/j.scitotenv.2018.09.334.
- Sen, P.K., 1968. Estimates of the regression coefficients based on Kendall’s tau. Journal of the American Statistical Association, 63,1379–1389. https://www.tandfonline.com/doi/abs/10.1080/01621459.1968.10480934.
- Shrestha, S., Shrestha, M., Babel, M.S., 2015. Modelling the potential impacts of climate change on hydrology of Indrawati River Basin in Nepal. Environmental Earth Science simulating climate extremes over China? Adv. Atmos. Sci., https://doi.org/10.1007/s00376-020-9289-1.
- Taylor, K.E., 2001. Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res., 106, 7183-7192. http://dx.doi.org/10.1029/2000JD900719.
- Teutschbein, C., Seibert, J., 2012. Bias correcion of regional climate model simulation for hydrological climate-change impact studies: Review and evalutaion of different methods. J. Hydrology, 456-457. http://dx.doi.org/10.1016/j.jhydrol.2012.05.052.
- Yang, X; Wood, E. F; Shefield, J; Ren, L; Zhang, M. and Wang, Y., 2018. Bias Correction of Historical and Future Simulations of Precipitation and Temperature for China from CMIP5 Models. Journal of Hydrometeorology. http://dx.doi.org/10.1175/JHM-D-17-0180.1.
- You, Q; Cai,Z; Wu, F; Jiang. Z; Repin,N; Shem, S,S.P., 2021. Temperature dataset of CMIP6 models over China: evaluation, trend and uncertainty. Climate Dynamics. http://dx.doi.org/10.1007/s00382-021-05691-2.
- Zhang, L. Hua and D. Jiang., 2020. Assessment of CMIP6 model performance for temperature and precipitation in Xinjiang , China, Atmospheric and Oceanic Science Letters, https://doi.org/10.1016/j.aosl.2021.100128.
- Zhang, X., Vincent, L.A., Hogg, W.D., Niitsoo, A., 2000. Temperature and rainfall trends in Canada during the 20th century. Atmospheric Ocean, 38, 395-429. http://dx.doi.org/10.1080/07055900.2000.9649654.
- Zheng, Y.T., Han, J.C., Huang, Y.F., Fassnacht, S.R., Xie, S., Lv, E., Chen, M., 2017. Vegetation response to climate conditions based on NDVI simulations using stepwise cluster analysis for the Three-River Headwaters region of China. Ecol. Indic. 92, 18-29. https://doi.org/10.1016/j.ecolind.2017.06.040.
 
CAPTCHA Image