Investigating Gorganrood River Morphological Indices and its Effects on Flood Zones using Remote Sensing Data and Spatial Analysis (Case Study: Aq’ Qala City)

Document Type : Research Article

Authors

1 MSc in Water and Hydraulic Structures, Shahrood University of Technology, Shahrood, Iran

2 Assistant Professor, Faculty of Civil Engineering, Shahrood University of Technology, Shahrood, Iran

3 Associate Professor, Faculty of Civil Engineering, Shahrood University of Technology, Shahrood, Iran

Abstract

Urban rivers are of the most important reasons for flood inundation in cities. This study aimed to investigate the morphological effects of the Gorganrood River in Aq’ Qala City in a case of flood inundation on March 2019. The images of Sentinel-2 and Landsat-8 were downloaded for full flood monitoring. After preprocessing, the NDWI and MNDWI indices were applied on the images to extract the flood zones. The sinuosity index and the number and mean radius of meanders were calculated from Sallaq Yilqi village to Dogonchi village using Google Earth and AutoCAD. The NDWI index was appropriate to detect the permanent and clear waters, while the MNDWI index was appropriate to detect the muddy waters and high humidity terrains. The area of flooded zones which obtained from the MNDWI index was 88% more than those of NDWI index. The sinuosity index was 3.88 (sever meander) in the district of the Sallaq Yilqi village to the Yampi village. Destruction outer arc meanders and low radius of meanders and erosion of soils in upstream were caused overflow the flood in the Gorganrood channel. On the 20th March due to low channel width and very-low gradient of bed river (0.0002) from the Aq Tekeh Khan village to the Dogonchi village were caused slow velocity of flood stream, therefore the water level was raised and the city of Aq’ Qala were flooded. According to the flood maps obtained, the northern and southern of the Aq’ Qala city located at high-risk zone. Canalization of outer meanders curvature, planting the absorbent vegetation around the quantitative buffer zone of the Gorganrood river, widening and dredging the channel and modifying structure of channel on the northern plains of Gorganrood River can be prevented from flooding over the Aq’ Qala city.

Keywords


تشکر و قدردانی
نویسندگان مقاله از اداره منابع طبیعی و آبخیرداری و شرکت آب منطقه ای استان گلستان بابت در اختیار قرار دادن گرارشهای سیلاب 1398 گلستان تشکر می کنند.

بیاتی خطیبی، مریم؛ 1392. بررسی تغییرات زمانی کانال‌های فعال در مسیرهای پیچان‌دار با استفاه از روش‌های تجربی و با اسناد به لایه‌بندی رسوبات کناری، مطالعه موردی: مسیر پیچان‌دار آجی چای. جغرافیا و برنامه‌ریزی محیطی. تابستان. سال 26، پیاپی 58.
جعفر بیگلو، منصور؛ باقری سید شکری، سجاد؛ نگهبان، سعید؛ صفرراد، طاهر؛ 1391. بررسی تغییرات بستر و ویژگی‌های ژئومورفیکی رودخانه گیلانغرب در سال‌های 1344 تا 1381. پژوهش‌های ژئوموفیکی کمی. شماره 2. پاییز 1391، صص 87-102.
جوکار سرهنگی، عیسی؛ تلنگ، ابراهیم؛ لرستانی، قاسم؛ 1396. بررسی تغییرات مورفومتری رودخانه با تاکید بر پیچانرودها (مطالعه موردی: رودخانه چهل چای-نرماب). فصلنامه علمی-پژوهشی آمایش جغرافیایی فضا. دانشگاه گلستان. سال هفتم. شماره مسلسل 26، صص 30-17.
یمانی، مجتبی؛ دولتی، جواد؛ زارعی، علیرضا؛ 1389. تأثیرگذاری عوامل هیدروژئومورفیک در تغییرات زمانی و مکانی بخش میانی رودخانه اترک. تحقیقات جغرافیایی. زمستان. سال بیست و پنجم شماره 4 (پیاپی 99). صص 1-24.
یمانی، مجتبی؛ نوحه‌گر، احمد؛ 1382. بررسی وضعیت ژئومورفولوژیکی پیچانرود و نقش آن در فرسایش بستر و کناره‌های رودخانه میناب (پایین دست سد میناب). پژوهش‌های جغرافیایی. شماره 51. بهار. صص 84-65.
 
Balasch, JC., Pino D., Ruiz-Bellet, JL., Tuset, J., Barriendos, M., Castelltort, X., & Peña JC., 2019. The extreme floods in the Ebro River basin since 1600 CE. Science of the Total Environment. Elsevier B.V. 646: 645–660. Available at: https:// doi.org/ 10.1016/ j. scitotenv. 2018.07.325
Di Baldassarre, G., & Uhlenbrook, S., 2012. Is the current flood of data enough? A treatise on research needs for the improvement of flood modelling. Hydrological Processes 26(1):153–158, DOI:10.1002/hyp.8226
Du, Y., Zhang, Y., Ling, F., Wang, Q., Li, W., & Li, X., 2016. Water Bodies’ Mapping from Sentinel-2 Imagery with Modified Normalized Difference Water Index at 10-m Spatial Resolution Produced by Sharpening the SWIR Band. Remote Sensing 8(4):354. Available at: http://www.mdpi.com/2072-4292/8/4/354
Himayoun, D., & Roshni, T., 2020. Geomorphic changes in the Jhelum River due to an extreme flood event: a case study. Arabian Journal of Geosciences. Arabian Journal of Geosciences 13(2):12-23. DOI: 10.1007/s12517-019-4896-9
Kumar, R., Kamal, V., & Singh, RK., 2013. Geomorphic Effects of 2011 Floods on Channel Belt Parameters of Rapti River: A Remote Sensing and GIS Approach. Corona Journal of Science and Technology 2(Ii):4–12, ISSN: 2319 – 6327 (Online), Vol. 2, No. II (2013), pp. 4-12
Kwang, C., Matthew, E., Jnr, O., & Amoah, AS., 2018. Comparing of Landsat 8 and Sentinel 2A using Water Extraction Indexes over Volta River. Journal of Geography and Geology; Vol. 10, No. 1; 10(1):1–7. DOI: 10.5539/jgg.v10n1p1
Langat, PK., Kumar, L., & Koech, R., 2019. Monitoring river channel dynamics using remote sensing and GIS techniques. Geomorphology. Elsevier B.V 325:92–102. Available at: https://doi.org/10.1016/j.geomorph.2018.10.007
McFeeters, SK., 1996. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. International Journal of Remote Sensing 17(7):1425–1432, https://doi.org/10.1080/01431169608948714
Musa, ZN., Popescu, I., & Mynett, A., 2015. A review of applications of satellite SAR, optical, altimetry and DEM data for surface water modelling, mapping and parameter estimation. Hydrology and Earth System Sciences 19(9): 3755–3769, doi:10.5194/hess-19-3755-2015
Nandi, I., Srivastava, PK., & Shah, K., 2017. Floodplain Mapping through Support Vector Machine and Optical / Infrared Images from Landsat 8 OLI / TIRS Sensors : Case Study from Varanasi. Water Resources Management. Water Resources Management. Available at: http://dx.doi.org/10.1007/s11269-017-1568-y
Szantoi, Z., & Strobl, P., 2019. Copernicus Sentinel-2 Calibration and Validation. European Journal of Remote Sensing. Taylor & Francis 52(1):253–255. Available at: https:// doi.org/ 10.1080/22797254.2019.1582840
Wang, Y., Colby, JD., & Mulcahy, KA., 2002. An efficient method for mapping flood extent in a coastal floodplain using Landsat TM and DEM data. International Journal of Remote Sensing 23(18):3681–3696, https://doi.org/10.1080/01431160110114484
Xu, H., 2006. Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. International Journal of Remote Sensing 27(14):3025–3033, https://doi.org/10.1080/01431160600589179
Zhou, Y., He, B., Xiao, F., Feng, Q., Kou, J., & Liu, H., 2019. Retrieving the lake trophic level index with landsat-8 image by atmospheric parameter and RBF: A case study of Lakes in Wuhan, China. Remote Sensing 11(4), https://doi.org/10.3390/rs11040457
 
 
CAPTCHA Image