Monitoring Surface Elevation Changes of Kerman City and Prediction of High-Risk Areas Using ASAR and SENTINEL 1 Radar Images

Document Type : Research Article

Authors

Shahid Bahonar University of Kerman

Abstract

1 Introduction
One of the fundamental and increasing problems in most human societies, which occurs mostly through human activities, is the phenomenon of subsidence. The subsidence refers to the surface depression caused by various natural factors such as the dissolution, the watering of the ice, human activities such as mining, unconventional withdrawal from groundwater or oil. Growing population has led to irregular use of water in domestic, industrial and agricultural uses which, in turn, has led to undesirable quantitative and qualitative effects on water resources. In many plains in Iran, excessive exploitation of groundwater has led to a subsidence event. In recent decades, the increase in the world population, especially in urban areas as an important phenomenon, has created complexities and problems in various fields. Urban areas are particularly vulnerable due to population congestion, buildings and communication arteries. Land subsidence in urban areas is one of the most important issues in urban planning and design. Space-based geodetic techniques that can measure changes in the land-surface position have been significantly advanced over the past two decades with the development of satellite-borne differential interferometric synthetic aperture radar (InSAR) techniques. The InSAR techniques can measure sub-centimeter ground displacements at high spatial detail over regions spanning. The purpose of this research is to monitor the phenomenon of subsidence in Kerman over the course of 15 years, and identify high-risk areas across the city.
2 Materials and Methods
InSAR is a remote sensing technique that uses radar imagery to provide spatially dense measurements of surface displacements the satellite line of sight (LOS) with millimeter to centimeter accuracy. Multiple SAR images are used to generate sets of interferograms to form a time series after a joint inversion. InSAR time series analysis helps reduce the impact of several noise sources (decorrelation, orbital and DEM errors, atmospheric delays, phase unwrapping errors) on displacement rates estimates during the time period spanned by the full dataset with an accuracy for surface displacement velocity at the mm/yr scale. We used 6 ESA ASAR C-band radar images acquired by the Envisat satellite between March 2003 and August 2012 from Track 163 (along descending orbits) and we prepared 2 SENTINEL1 radar images acquired by Soyuz satellite. A small-baseline approach  was used to process interferograms and invert for average displacement rates and evolution through time with the New Small Baseline Algorithm Subset chain, as described in detail by 4 individual interferograms were generated using a modified version of the SARScape and the STRM 30-global DEM.
3 Results and Discussion
The interferometric image was provided by using the radar interference method (Fig. 4). As shown in Fig. 4, number of fringes were created. Since the used satellite (Envisat) works in the C band, and each fringe obtained is 2.2 λ which equals8.2 centimeters, the amount of displacement in the direction of the satellite's view is given by counting the number of fringes. Depending on how the color cycles are observed, the displacement rate also varies, so that if the cycle is yellow-blue-red, moving away from the radar and if the cycle is yellow-red-blue, the shift to the radar has occurred. What is observed in different periods is the increasing trend of subsidence and the decreasing trend of uplift over these years. So, as shown in Fig. 5 subsidence rate has been changed from 7.3 to 7.6 cm per year and uplift rate has been changed 6 to 6.6 cm per year in the study area, between 2004 and 2010. So, as shown in Fig. 6. Subsidence rate has been changed from 9 to 10.6 cm per year and uplift rate has been changed 5 to 4.8 cm per year in the study area, between 2010 and 2017. The spatial pattern of displacements has also changed over the course of the study, so that, the subsidence ranges have increased and that have been transferred to urban areas from around of city. In order to identify high risk areas in Kerman city, a high risk areas map was produced. Accordingly, the city of Kerman divided into four zones including very high risk, high risk, and relatively risky and relatively low risk areas. The results showed that about 700 hectares of the city's territory are in very high-risk and high-risk areas.
4 Conclusion
The results of the radar interferometry method show that the different areas of Kerman have had different behaviors over the past 15 years in terms of subsidence and uplift. The subsidence areas were concentrated around the city of Kerman in the period of 2004 to 2007, and the subsidence rate was relatively low. Over the years, more areas of city have been abandoned, and so far. Considering the existence of destructive evidence on the city buildings with high ranges of uplift, it can be concluded that earth's uplift can be as risky as subsidence.

Keywords


امینی زاده بزنجانی، محمدرضا ؛ آقاملایی، ایمان؛ لشکری پور، غلامرضا؛ غفوری، محمد؛ بهرامی، محمد؛ 1395. بررسی تأثیر محیط رسوبی بر خواص مهندس خاک‌های شهر کرمان با توجه به رفتار مقاومتی آن‌ها. نشریه زمین شناسی مهندسی. جلد دهم. شمارۀ 1. صص. 3245-3270.
آقاملایی، ایمان؛ لشکری پور، غلامرضا؛ غفوری، محمد؛ حافظی مقدس، ناصر؛ 1396. بررسی اثرات بالا امدگی و پیش بینی نوسانات سطح آب زیرزمینی ناشی از توسعه شبکه جمع آوری فاضلاب در شهر کرمان. فصلنامه علمی پژوهشی مهندسی آبیاری و آب. سال هشتم. شماره سی‌ام. صص. 140-157.
تورانی، مرجان؛ آقاتابای، مریم؛ روستایی، مه‌آسا؛ 1397. مطالعۀ فرونشست در غرب استان گلستان با استفاده از روش تداخل سنجی راداری. مجله آمایش جغرافیایی فضا. سال هشتم. شماره بیست و هفتم. صص. 117-128.
جنت، کبری؛ قاضی فرد، اکبر؛ 1388. بررسی ویژگی‌ها و علل فرونشست در دشت گلپایگان با استفاده از تداخل-سنجی رادار و GIS. نخستین کنفرانس آب‌های زیرزمینی. صص. 1-9
حاجب، زهرا؛ موسوی، زهرا؛ معصومی، زهره؛ رضایی، ابوالفضل؛ 1397. بررسی فرونشست دشت قم با استفاده ازتداخل سنجی راداری. مجموعه مقالات هجدهمین کنفرانس ژئوفیزیک ایران. صص. ٣٥٢-355.
حشمی، شیما؛ المدرسی، سید علی؛ 1394. مدل‌سازی فرونشست دشت نیشابور با استفاده از سری‌های زمانی و تکنیک DINSAR. جغرافیا و برنامه‌ریزی محیطی 57(1). صص.67-84.
شریفی کیا، محمد؛ مال امیری، نعمت؛ شایان، سیاوش؛ 1392. سنجش میزان آسیب‌پذیری بافت‌های شهری در برابر مخاطره فرونشست زمین مطالعه موردی (بخشی از جنوب شهر تهران). جغرافیا و مخاطرات محیطی. شماره پنجم. صص. 91-106.
شریفی کیا، محمد؛ 1391. تعیین میزان و دامنه فرونشست زمین به کمک روش تداخل سنجی راداری در دشت نوق- بهرمان. مجله مدرس علوم انسانی- برنامه ریزی و آمایش فضا. 16(3). صص. 34-42.
صالحی، رضا؛ غفوری، محمد؛ لشکری پور، غلام رضا؛ دهقانی، محمد؛ 1392. بررسی فرونشست دشت مهیار جنوبی با استفاده از روش تداخل سنجی راداری. فصلنامه علمی پژوهشی مهندسی آبیاری و آب. سال سوم. شماره 11. صص. 47 -57.
عباس نژاد، احمد؛ 1383. حفره فروکش کارستی در اختیارآباد شمال باختری کرمان. نشریه علوم زمین. سال یازدهم. شماره 51. صص. 28-35.
عباس نژاد، احمد؛ حسن زاده، رضا؛ 1385. ارزیابی خطر نشست و تورم زمین در شهر کرمان با استفاده از GIS. بیست و پنجمین گردهمایی علوم زمین. صص. 1-7.
کریمی، مرتضی؛ قنبری، علی اصغر؛ امیری، شهرام؛ 1392. سنجش خطرپذیری سکونتگاه‌های شهری از پدیده فرونشست زمین مطالعه موردی: منطقه 18 شهر تهران. مجله علمی-پژوهشی برنامه‌ریزی فضایی (جغرافیا). سال سوم. شماره اول. صص. 37-56.
مهرابی، علی؛ پورخسروانی، محسن؛ 1397. اندازه گیری میزان جابجایی سطح زمین ناشی از زلزله 1383 داهوئیه (زرند) استان کرمان و شناسایی گسل عامل آن با استفاده از تکنیک تداخل‌سنجی راداری. مجله پژوهش‌های ژئومورفولوژی کمی. دوره 7. شماره 1. صص. 61-73.
میرشاهی، فاطمه‌السادات؛ ولدان‌زوج، محمدجواد؛ دهقانی، مریم؛ هاشمی امین‌آبادی، سیدمحمد؛ 1392. اندازه گیری فرونشست سطح زمین به کمک تکنیک تداخل‌سنجی راداری با استفاده از تصاویر TerraSAR- . بیستمین همایش ملی ژئوماتیک.
یاراحمدی، جمشید؛ 1395. بررسی پدیده فرونشست زمین در دشت‌های بحرانی استان آذربایجان شرقی به روش اینترفرومتری راداری. اولین همایش بین المللی مخاطرات طبیعی و بحران‌های زیست محیطی ایران، راهکارها و چالش‌ها. تبریز.
Boni, R., Herrera, G., Meisina C., Notti, D., Bejar-Pizarro, M., Zucca, F., Gonzalez, PJ., Palano, M., Tomas, R., Fernandez, J., Fernandez- Merodo, JA., Mulas, J., Aragon, R., Guardiola-Albert, C., Mora, O., 2015. Twenty-year advanced DInSAR analysis of severe land subsidence: the Alto Guadalentı´n Basin (Spain) case study. Eng Geo, 198:40–5
Burgmann, R., Rosen, P., Fielding E., 2000. Synthetic Aperture Radar interferometry to measure Earth’s surface topography and its deformation. Annu. Rev. Earth. Planet. Sci., 28, 169– 209.
Castellazzia, P., Dominguezb, N., Martela, R., Calderheada, A., Normandc, J., Garfiasb, L., Riverada, A., 2016. Land subsidence in major cities of Central Mexico: InterpretingInSAR-derived land subsidence mapping with hydrogeological data. International Journal of Applied Earth Observation and Geoinformation, 47: 102–111.
Chang, C. P., Chang, T. Y., Wang, C. T., Kue, C. H. & Chen, K. S., 2004. Land surface deformation corresponding to seasonal ground-water fluctuation, determining by SAR interferometry in the SW Taiwan. Math. Comput. Sim., 67: 351-359.
Ferretti, A., Savio, G. Barzaghi, R., Borghi, A., Musazzi, S., Novali, F., Prati, C., Rocca, F., 2007. Submillimeter Accuracy of InSAR Time Series: Experimental Validation. Geoscience and Remote Sensing. IEEE Transactions, 45, 1142-1153.
Ferretti, D., Colombo, A., Fumagalli, F., Novali, F., Rucci A., 2015. InSAR data for monitoring land subsidence: time to think. big-proc-iahs.net.
Ghazifard, A., Akbari, E., Shirani, K., Safaei, H., 2017. Evaluating land subsidence by field survey and D-InSAR technique in Damaneh City, Iran. J Arid Land, 9(5): 778–789.
Ghazifard, A., Moslehi, A., Safaei, H., Roostaei, M., 2016. Effects of groundwater withdrawal on land subsidence in Kashan Plain, Iran. Bull Eng Geol Environ, 75:1157–1168.
Hooper, M., Bekaert, D., Spaans, K., Arikan, M., 2012. Recent advances in SAR interferometry time series analysis for measuring crustal deformation. Tectonophysics, pp: 514- 517.
Jafari, F., Javadi, S., Golmohammadi, G., Karimi, N., Mohammadi, K., 2016. Numerical simulation of groundwater flow and aquifer-system compaction using simulation and InSAR technique: Saveh basin, Iran. Environ Earth Sci., 75:833.
Lanari, R., Lundgren, P., Manzo, M. & Casu, F., 2004. Satellite radar interferometry time series analysis of surface deformation for Los Angeles, California. Geophysical Research Letters, 31.
Liu, X., Wang, Y., Yan, S., 2014. Monitoring vertical ground deformation in the North China Plain using the multitrack PSInSAR technique. Chin J Geophys- Chin Edit, 57:3129–3139
Liu, X., Wang, Y., Yan, S., 2017. Ground deformation associated with exploitation of deep groundwater in Cangzhou City measured by multi-sensor synthetic aperture radar images. Environ Earth Sci., 76:6.
Lubis, AM., Sato, T., Tomiyama, N., Isezaki, N., Yamanokuchi, T., 2011. Ground subsidence in Semarang-Indonesia investigated by ALOS–PALSAR satellite SAR interferometry. J Asian Earth Sci., 40:1079–1088.
Motagh, M., Y. Djamour, T.R. Walter, H.U. Wetzel, J. Zschau and S. Arabi., 2007. Land subsidence in Mashhad Valley, northeast Iran, results from InSAR, leveling and GPS. Geophysical Journal International, 168: 518-526.
Raspini, F., 2013. Advanced interpretation of land subsidence by validati multi-interferometric SAR data: the case study of the Anthemountas basin (Northern Greece. Natural Hazards and Earth System Sciences, (23): 24-45.
Sharifikia, M., 2012. Determination of the rate and extent of earth subsidence using the radar interferometry method in Noogk-Bahreman plain. Quarterly Journal of Humanities (Space Planning), 16(3): 34 -42.
Zhao, F., 2016. Study on the Method of Multi-platform SAR Data Sets Based Ground Deformation Monitoring (Chinese) Dissertation. China University of Mining and Technology, (23)12: 123-134.
CAPTCHA Image