The Evaluation of Landslide Sensitivity using Frequency Ratio and Fuzzy Logic Models (Case Study: Khorramabad-Arak Freeway)

Document Type : Case Study

Author

Department of Geology, Khorramabad Branch, Islamic Azad University, Khorramabad, Iran

Abstract

Landslide risk zoning plays a significant role in the development of safe and sustainable infrastructure, urbanization, land use, and environmental planning. Identifying and determining sensitive and landslide-prone areas not only prevents damages but also provides a basis for the implementation of slope stabilization plans. Landslide risk zoning is done through different methods including statistical, expert evaluation and definitive methods. Choosing appropriate zoning method depends on the type of analysis, study area, experts’ skills and knowledge, and the type of geological and geomorphic parameters affecting landslide risk.  The main goal of this study were preparing a landslide distribution map, identifying the factors affecting landslides, and zoning its danger in Khorramabad-Arak Freeway (Khorramabad to Boroujerd). Using satellite images and field studies as well as frequency ratio (FR) model, a landslide distribution map was prepared, and the factors influencing landslides including slope, lithology, slope direction, elevation classes, land use, rainfall, distance from fault factors and the network of waterways were analyzed. Fuzzy gamma (0.9) was used for zoning the landslide risk. The landslide hazard map was divided into very low (18.55%), low (30.67%), medium (26.51%), high (18.15%) and very high category (6.12%) and finally validated by ROC curve. The results of ROC curve analysis for Fuzzy GAMMA showed that the landslide sensitivity map in the study area has excellent predictive power with area under the curve of AUC=0.94. Therefore, it is suggested to apply the obtained results for freeway security and regional planning.

Graphical Abstract

The Evaluation of Landslide Sensitivity using Frequency Ratio and Fuzzy Logic Models (Case Study: Khorramabad-Arak Freeway)

Keywords


پورقاسمی، حمیدرضا؛ مرادی، حمیدرضا؛ فاطمی عقدا، محمود؛ مهدوی فر، محمدرضا؛ محمدی، مجید؛ 1388. ارزیابی خطر زمین‌لغزش با استفاده از روش تصمیم‌گیری چند معیاره فازی. مجله علوم و مهندسی آبخیزداری ایران. شماره 8، صص 51-62. https://www.sid.ir/paper/134813/fa
دسترنج، علی؛ وکیلی تجره، فرزانه؛ نور، حمزه؛ 1400. ارزیابی پهنه‌های حساس به وقوع زمین‌لغزش در رشته‌کوه بینالود. نشریه علوم و مهندسی آبخیزداری ایران. شماره 53. صص 12-22.
رمضانی، بهمن؛ ابراهیمی، هدی؛ 1388. زمین‌لغزش و راهکارهای تثبیت آن. فصلنامه جغرافیایی آمایش محیط. شماره 7. صص 129-139. https://www.magiran.com/paper/902037
زالی، مهراب؛ شاهدی، کاکا؛ 1400. ارزیابی حساسیت زمین‌لغزش با استفاده از رویکرد منطق فازی و سامانه اطلاعات جغرافیایی در حوزه آبخیز نکارود. نشریه مدل‌سازی و مدیریت آب‌وخاک. شماره 1. صص 67-80.
 
Akgun A, Dag S, Bulut F., 2007. Landslide susceptibility mapping for a landslide-prone area (Findikli, NE of Turkey) by likelihood-frequency ratio and weighted linear combination models. Eng. Geol., 54: 1127-1143. https://doi.org/10.1007/s00254-007-0882-8
Anbalagan R, Kumar R, Lakshmanan K, Parida S, Neethu S., 2015. Landslide hazard zonation mapping using frequency ratio and fuzzy logic approach, a case study of Lachung Valley, Sikkim. Geoenvironmental Disasters, 2(6): 1-17. DOI:10.1186/s40677-014-0009-y
Bera A, Mukhopadhyay BP, Das D., 2019. Landslide hazard zonation mapping using multicriteria analysis with the help of GIS techniques: a case study from Eastern Himalayas, Namchi, South Sikkim. Natural Hazards, 96(2): 935-959. https://doi.org/10.1007/s11069-019-03580-w
Bui DT, Pradhan B, Lofman O, Revhaug I, Dick O., 2012. Spatial prediction of landslide hazards in Hoa Binh province (Vietnam): A comparative assessment of the efficacy of evidential belief functions and fuzzy logic models. CATENA, 96: 28–40. https:// doi.org/ 10.1016/j.catena.2012.04.001
Chen W, Chai H, Sun X, Wang Q, Ding X, Hong H., 2016. A GIS-based comparative study of frequency ratio, statistical index and weights-of-evidence models in landslide susceptibility mapping. Arab. J. Geosci., 9(3): p. 204. https://doi.org/10.1007/s12517-015-2150-7
Dai FC, Lee CF., 2001. Terrain-based mapping of landslide susceptibility using a geographical information system: a case study. Canadian Geot Journal, 38(5):911–923. DOI:10.1139/t01-021
Ding Q, Chen W, Hong H., 2017. Application of frequency ratio, weights of evidence and evidential belief function models in landslide susceptibility mapping. Geocarto International, 32(6): 619-639. DOI:10.1080/10106049.2016.1165294
Du G, Zhang Y, Iqbal J, Yang Z, Yao X., 2017. Landslide susceptibility mapping using an integrated model of information value method and logistic regression in the Bailongjiang watershed, Gansu Province, China. Journal of Mountain Sci., 14(2):249–268. https:// doi.org/ 10.1007/s11629-016-4126-9
Fall M, Azzam R, Noubactep C., 2006. A multi-method approach to study the stability of natural slopes and landslide susceptibility mapping. Eng Geol, 82:241–263. https:// doi.org/ 10.1016/ j.enggeo.2005.11.007
Kumar P, Mital A, Ray PKC, Chattoraj SL., 2021. Landslide Hazard and Risk Assessment Along NH-108 in Parts of Lesser Himalaya, Uttarkashi, Using Weighted Overlay Method. Geohazards, 86: 163-180. https://doi.org/10.1007/978-981-15-6233-4_12
Mondal S, Maiti R. 2013. Integrating the analytical hierarchy process (AHP) and the frequency ratio (FR) model in landslide susceptibility mapping of Shiv-khola watershed. Int. J. of Dis. Risk Sci., 4(4): 200-212. https://doi.org/10.1007/s13753-013-0021-y
Panchal S, Shrivastava AK., 2021. Landslide hazard assessment using analytic hierarchy process (AHP): A case study of National Highway 5 in India. Ain Shams Engineering Journal, https://doi.org/10.1016/j.asej.2021.10.021.
Shano L, Raghuvanshi TK, Meten M., 2022. Landslide Hazard Zonation using Logistic Regression Model: The Case of Shafe and Baso Catchments, Gamo Highland, Southern Ethiopia. Geotech Geol Eng., 40, 83–101. https://doi.org/10.1007/s10706-021-01873-1
Singh K.  Kumar V., 2018. Hazard assessment of landslide disaster using information value method and analytical hierarchy process in highly tectonic Chamba region in bosom of Himalaya. J Mountain Sci., 15 (4): 808-824. https://doi.org/10.1007/s11629-017-4634-2
Sur U, Singh P, Rai PK., 2021. Landslide probability mapping by considering fuzzy numerical risk factor (FNRF) and landscape change for road corridor of Uttarakhand, India. Environ Dev Sustain, 23: 13526–13554. https://doi.org/10.1007/s10668-021-01226-1
Tanaka K., 1996. An Introduction to Fuzzy Logic for Practical Applications. Springer New York, 148p. https://link.springer.com/book/9780387948072
Van Westen CJ, Rengers N, Soeters R., 2003. Use of Geomorphological Information in Indirect Landslide Susceptibility Assessment. In: Natural Hazards, Vol. 30. Kluwer Academic Publishers: 330–419. https://doi.org/10.1023/B:NHAZ.0000007097.42735.9e
Yesilnacar E, Topal T., 2005. Landslide susceptibility mapping: a comparison of logistic regression and neural networks methods in a medium scale study, Hendek region (Turkey). Engineering Geology, 79(3), 251-266. https://doi.org/10.1016/j.enggeo.2005.02.002
CAPTCHA Image