The Assesment of Neotectonic Activity in Raveh-Rahjerd Volcano-Sedimentary Area (Salafchegan)

Document Type : Research Article

Authors

1 Msc in Tectonics, Department of Sedimentary Basins and Petroleum, Faculty of Earth Sciences, Shahid Beheshti University, Tehran, Iran

2 Professor, Department of Sedimentary Basins and Petroleum, Faculty of Earth Sciences, Shahid Beheshti University, Tehran, Iran

3 Associate Professor, Department of Sedimentary Basins and Petroleum, Faculty of Earth Sciences, Shahid Beheshti University, Tehran, Iran

Abstract

Tectonics geomorphology is one of the most important modern scientific disciplines. Quantitative analysis based on defined morphometric indices is an available and relatively low-cost and fast method that is used to understand the differences in the amount of tectonic activities in young landscapes. These indices are used as a basic identification tool to detect tectonic deformations or to estimate the relative variations of tectonic activity in a particular area. However, these studies are more sensitive in areas consisting of volcanic rocks, especially for the precise definition of sub-basin boundaries. The study area that consists of outcrops of volcanic rock and young deposits is located in the south of Salafchegan; on the border of Qom-Markazi provinces. Six morphometric indices were measured to determine neotectonic activity: Stream length gradient index (SL), Ratio of valley Floor width to valley height (Vf), hypsometric integral (Hi), drainage basin shape (Bs), drainage basin asymmetry (Af), and transverse topographic symmetry (T) for each sub-basins. After calculating the indices, averages of them, and the relative active tectonic index (Iat), the area was divided into four different tectonic zones based on activity ratio. In this categorazation, category 1 to 4 respectively represent the highest to lowest tectonic activity. It was also found that 2.86% of the basins are in category 2, 51.43% in category 3, class and 45.71% in category 4.

Graphical Abstract

The Assesment of Neotectonic Activity in Raveh-Rahjerd Volcano-Sedimentary Area (Salafchegan)

Keywords


آقانباتی، ع؛ 1383. زمین‌شناسی ایران. سازمان زمین‌شناسی کشور. https://gsi.ir/ahwaz/fa/book/166/
سامانی، ب؛ چرچی، ع؛ راضی جلالی، ی؛ 1400. تحلیل نو‌زمین ساخت گسل شوشتر با استفاده از شاخص‌های مورفومتری. زمین‌ساخت. (4) 13. 21-1. https://doi.org/10.22077/JT.2021.1598
سمندر، ن؛ روستایی، ش؛ 1395. بررسی تکتونیک فعال حوضه‌ اسکو چای با استفاده از شاخص‌های ژئومورفیک و شواهد ژئومورفولوژیکی. مخاطرات محیط طبیعی، 5(9), 55–76.
شفیعی، ا؛ علوی، س. ا؛ نادری میقان، ن؛ 1388. تکتونیک فعال در رشته‌کوه بینالود با تکیه بر بررسی‌های مورفوتکتونیکی. پژوهش‌های جغرافیای طبیعی. 41 (70). 79-91.
صلحی، س؛ سیف، ع؛ 1397. مورفومتری پروفیل طولی دره سهند. پژوهش‌های ژئومورفولوژی کمی. 6(4). 53-69.
علایی مهابادی، س؛ کهنسال، ر؛ قمیان، ی؛ 1379. نقشه زمین­شناسی سلفچگان-خورهه (1:100000). سازمان زمین‌شناسی و اکتشافات معدنی کشور.
کشتگر، ش؛ پرتابیان، ع؛ نظری، م؛ 1399. پارامترهای مورفومتری و منشأ تکتونیکی مخروط آتشفشانی توزکی، پهنه چین خورده-رانده سیستان، شرق ایران. زمین‌ساخت. (4) 13. 39-21.
مددی، ع؛ رضایی مقدم، م. ح؛ رجایی، ع؛ 1383. تحلیل فعالیت­های نئوتکتونیکی با استفاده از روش­های ژئومورفولوژی در دامنه شمال­غربی تالش. مجله پژوهش­های جغرافیایی. شماره 48. 123-138.
 
Alavi, M., 1994. Tectonics of the Zagros orogenic belt of Iran: new data and interpretations. Tectonophysics, 229(3-4), 211–238. https://doi.org/10.1016/0040-1951(94)90030-2.
Alavi, M., 2004. Regional stratigraphy of the Zagros fold-thrust belt of Iran and its proforeland evolution. American Journal of Science, 304(1), 1–20.
Allen, M. B., Kheirkhah, M., Emami, M. H., & Jones, S. J., 2011. Right-lateral shear across Iran and kinematic change in the Arabia-Eurasia collision zone. Geophysical Journal International, 184(2), 555–574. https://doi.org/10.1111/j.1365-246X.2010.04874.x.
Amos, C. B., & Burbank, D. W., 2007. Channel width response to differential uplift. Journal of Geophysical Research, 112, F0201.  https://doi.org/10.1029/2006JF000672.
Babaahmadi, A., Safaei, H., Yassaghi, A., Vafa, H., Naeimi, A., Madanipour, S., & Ahmadi, M., 2010. A study of Quaternary structures in the Qom region, West Central Iran. Journal of Geodynamics, 50(5), 355–367. https://doi.org/10.1016/j.jog.2010.04.006.
Berberian, M., & King, G. C. P., 1981. Towards a paleogeography and tectonic evolution of Iran.  Canadian Journal of Earth Sciences, 18(2), 210-265. https://doi.org/10.1139/e81-019.
Bull, W. B., & McFadden, L. D., 1980. Tectonic geomorphology north and south of the Garlock fault, California. In: Doehring, D.O. (Ed.), Geomorphology in Arid Regions. Proceedings of the Eighth Annual Geomorphology Symposium. State University of New York, Binghamton, 115–138.
Cannon P. J., 1976. Generation of explicit parameter for a quantitative geomorphic study of the Mill Creek drainage basin. Oklahoma Geology Notes, 36(1),  3–16. https://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=PASCALGEODEBRGM7720157747.
Font, M., Amorese, D. & Lagarde, J. L., 2010. Dem and GIS analysis of the stream gradient index to evaluate effects of tectonics: the Normandy intraplate area (NW France). Geomorphology, 119, 172–180.  https://doi.org/10.1016/j.geomorph.2010.03.017.
El Hamdouni, R., Irigaray, C., Fernández, T., Chacón, J., & Keller, E. A., 2008. Assessment of relative active tectonics, southwest border of the Sierra Nevada (southern Spain). Geomorphology, 96(1–2), 150–173. https://doi.org/10.1016/j.geomorph.2007.08.004.
Ghasemi, A., & Talbot, C. J., 2006. A new tectonic scenario for the Sanandaj-Sirjan Zone (Iran). Journal of Asian Earth Sciences, 26(6), 683–693.
Grosse, P., van Wyk de Vries, B., Euillades, P. A., Kervyn, M., & Petrinovic, I. A. (2012). Systematic morphometric characterization of volcanic edifices using digital elevation models. Geomorphology, 136(1), 114–131. https://doi.org/10.1016/j.geomorph.2011.06.001.
Hack, J. T., 1960. Interpretation of erosional topography in humid temperate regions. American Journal of Science, 258(A), 80–97.
 Hack, J. T., 1973. Stream Profile Analysis and Stream Gradient Index, U.S. Geological. Survey, 1(4), 421-429. https://pubs.usgs.gov/journal/1973/vol1issue4/report.pdf#page=49.
Hancock, P. L., & Williams, G. D., 1986. Neotectonics. Journal of the Geological Society, 143(2), 325–326. https://doi.org/10.1144/gsjgs.143.2.0323.
Hare, P. W., Gardner, T. W., 1985. Geomorphic indicators of vertical neotectonism along converging plate margins, Nicoya Peninsula, Costa Rica. In: Morisawa, M., Hack, J.T. (Eds.), Tectonic Geomorphology. Proceedings of the 15th Annual Binghamton Geomorphology Symposium. Allen and Unwin, Boston, 123-134.
Jain, V., &  Sinha, R., 2005. Response of active tectonics on the alluvial Baghmati River, Himalayan foreland basin, eastern India. Geomorphology, 70, 339–356.
Keller, E. A., 1986. Investigations of active tectonics: use of surficial earth processes. Active tectonics, 1, 136-147.
Keller, E. A., & Pinter, N., 2002. Active tectonics. Prentice Hall Upper Saddle River, NJ. https://www.google.com/books/edition/Active_Tectonics/sXASAQAAIAAJ?hl=en.
Khodaparast, S., Madanipour, S., & Nozaem, R., 2020. Structural evidence on strike slip kinematic inversion of the Kushk-e-Nosrat Fault zone, Central Iran. Geopersia, 10 (1), 195-209. https://doi.org/10.22059/GEOPE.2020.291450.648508.
Mayer, L., 1990. Introduction to Quantitative Geomorphology. Prentice Hall, Englewood, Cliffs, NJ. https://www.cabdirect.org/cabdirect/abstract/19911959868.
Panizza, M., Castaldini, D., Bollettinari, G., Carton, A., & Mantovani, F., 1987. Neotectonic research in applied geomorphological studies. Zeitschrift Fur Geomorphologie. Supplementband, 63, 173-211.
Pike, R. J., Wilson, S. E., 1971. Elevation–relief ratio, hypsometric integral and geomorphic area–altitude analysis. Geological Society of America Bulletin, 82(4), 1079–1084. https://doi.org/10.1130/0016-7606(1971)82[1079:ERHIAG]2.0.CO;2
Rhoads, B. L., Thorn, C. E., 1996. The Scientific Nature of Geomorphology. Earth Surface Processes and Landforms, 24 (7), 571-662.
Scheidegger, A. E., 1991. Theory of Aeolian and Desert Features; Theoretical Geomorphology, 400-421. https://doi.org/10.1007/978-3-642-75659-7_8.
Stewart, I. S., Sauber, J. & Rose, J., 2000. Glacio-seismotectonics: ice sheets, crustal deformation and seismicity. Quaternary Science Reviews, 19(14-15), 1367-1389. https://doi.org/10.1016/S0277-3791(00)00094-9.
Stocklin, J., 1968. Structural history and tectonics of Iran. AAPG Bulletin, 52(7), 1229-58. https://archives.datapages.com/data/bulletns/1968-70/data/pg/0052/0007/1200/1229.htm.
Strahler, A. N., 1952. Hypsometric (area-altitude curve) analysis of erosional topography. Geological Society of America Bulletin, 63, 1117-1141. https://doi.org/10.1130/0016-7606(1952)63[1117:HAAOET]2.0.CO;2.
Takin, M., 1972. Iranian Geology and Continental Drift in the Middle East. Nature, 235(5334), 147–150. https://doi.org/10.1038/235147a0.
Thorn, C. E., 1988. An Introduction to Theoretical Geomorphology. Boston: Unwin Hyman. 247 p. https://link.springer.com/book/9789401094436.
Turowski, J. M., Lague, D., Crave, A., Hovius, N., 2006. Experimental channel response to tectonic uplift. Journal of Geophysical Research, 111, F03008.
Wu, Z., & Hu, M., 2019. Neotectonics, active tectonics and earthquake geology: terminology, applications and advances. Journal of Geodynamics, 127, 1–15.
CAPTCHA Image