Andarzian, B., Bannayan, M., Steduto, P., Mazraeh, H., Barati, M. E., Barati, M. A., & Rahnama, A. (2011). Validation and testing of the AquaCrop model under full and deficit irrigated wheat production in Iran.
Agricultural Water Management,
100(1), 1-8.
https://doi.org/10.1016/j.agwat.2011.08.023
Ashraf, B., Alizadeh, A., Mousavi Baygi, M., & Bannayan Awal, M. (2014). Verification of Temperature and Precipitation Simulated Data by Individual and Ensemble Performance of Five AOGCM Models for North East of Iran.
Water and Soil, 28(2), 253-266. [In Persian]
https://doi.org/10.22067/jsw.v0i0.38011
Chen, H., Zhang, R., Liu, F., Shao, C., Liu, F., Li, W., ... & Lou, B. (2023). The chromosome-level genome of Cherax quadricarinatus.
Scientific Data,
10(1), 215.
https://doi.org/10.1038/s41597-023-02124-z
Chilkoti, V., Bolisetti, T., & Balachandar, R. (2017). Climate change impact assessment on hydropower generation using multi-model climate ensemble.
Renewable Energy,
109, 510-517.
https://doi.org/10.1016/j.renene.2017.02.041
Fowler, H. J., & Ekström, M. (2009). Multi‐model ensemble estimates of climate change impacts on UK seasonal precipitation extremes.
International Journal of Climatology: A Journal of the Royal Meteorological Society,
29(3), 385-416.
https://doi.org/10.1002/joc.1827
Fu, C., Wang, S., Xiong, Z., Gutowski, W. J., Lee, D. K., McGregor, J. L., ... & Suh, M. S. (2005). Regional climate model intercomparison project for Asia.
Bulletin of the American Meteorological Society,
86(2), 257-266.
https://doi.org/10.1175/BAMS-86-2-257
Jahangir, M. H., & Azimi, S. M. E. (2022). Evaluating the performance of artificial intelligence models for temperature downscaling (Study area: Ardabil province). Environmental Sciences, 20(4), 243-258. [In Persian] https://doi.org/10.48308/envs.2022.35101
Khazaei, M.R. & Khazaei, H. (2018). Scenarios in climate change impact assessment on monthly stream-flow of Karun basin. Journal of Environmental Sciences and Technology, 20(1),29-40. [In Persian]
Pinto, I., de Perez, E. C., Jaime, C., Wolski, P., van Aardenne, L., Jjemba, E., ... & Tall, A. (2023). Climate change projections from a multi-model ensemble of CORDEX and CMIPs over Angola.
Environmental Research: Climate,
2(3), 035007.
https://doi.org/10.1088/2752-5295/ace210
Semenov, M. A., & Stratonovitch, P. (2010). Use of multi-model ensembles from global climate models for assessment of climate change impacts.
Climate Research,
41(1), 1-14.
https://doi.org/10.3354/cr00836
Whetton,P., Hennessy, K., Bates, B., & Kent, D.(2010). Regional Projections and Model Evaluation: Potential Benefits of ‘Representative Future Regional Climates’. In Stocker, T., Dahe, Q., Plattner, G. K., Tignor, M., & Midgley, P
., IPCC expert meeting on assessing and combining multi model climate projections. Paper presented at Proceedings of the National Center for Atmospheric Research, Boulder Colorado, USA(pp105-107). Switzerland: IPCC Working Group.
https://www.ipcc.ch/publication/ipcc-expert-meeting-on-assessing-and-combining-multi-model-climate-projections/
Wilby, R. L., & Harris, I. (2006). A framework for assessing uncertainties in climate change impacts: Low‐flow scenarios for the River Thames, UK.
Water Resources Research,
42(2),1-10.
https://doi.org/10.1029/2005WR004065
Wilby, R. L., Tomlinson, O. J., & Dawson, C. W. (2003). Multi-site simulation of precipitation by conditional resampling.
Climate Research,
23(3), 183–194.
http://www.jstor.org/stable/24868347
Xu, K., Xu, B., Ju, J., Wu, C., Dai, H., & Hu, B. X. (2019). Projection and uncertainty of precipitation extremes in the CMIP5 multimodel ensembles over nine major basins in China.
Atmospheric Research,
226, 122-137.
https://doi.org/10.1016/j.atmosres.2019.04.018
Send comment about this article