Abdi Bastami, S., Memarian, H., Tajbakhsh, S. M., & Azamy Rad, M. (2019). Prioritization of landslide effective factors using logistic regression (Case study: A part of KopeDagh- Hezar Masjed Zone).
Journal of Watershed Management Resesrch, 10(19), 154-170. [In Persian]
http://dx.doi.org/10.29252/jwmr.10.19.154
Abedini, M., & Piroozi, E. (2020). Landslide hazard Zoning with Using Combination Methods of Hot Spot, ANP and WlC (Case Study: Khalkhal County).
Journal of Geography and Environmental Hazards,
8(4), 19-36. [In Persian]
https://doi.org/10.22067/geo.v0i0.81836
Abedini, M., Mozafari, H., & Faal Naziri, M. (2019). Investigating and comparing the effectiveness of information value models and frequency ratio coefficient and Shannon's entropy in zoning rock fall risk (case study: Zanjan-Teham-Taram road).
Journal of the Geographical Studies of Mountainous Areas, 3(1) ,55-75. [In Persian]
http://dx.doi.org/Doi:10.52547/gsma.3.1.55
Amirpour Kohsareh, S. (2018). Investigating geomorphological hazards of Ardabil to Sarcham road with emphasis on rockfall and landslide using fuzzy logic model. Master's thesis, University of Mohaghegh Ardabili. [In Persian]
Asghari Saraskanrod, S., & Mozafari, H. (2020). Estimate and Comparison of Frequency Ratio and Network Analysis models in Rock falling Zoning( Case study Zanjan road to Taham and Tarom).
Journal of Spatial Analysis Environmental Hazards, 6(4), 123-142. [In Persian]
http://dx.doi.org/10.29252/jsaeh.6.4.123
Cirillo, D., Zappa, M., Tangari, A. C., Brozzetti, F., & Ietto, F. (2024). Rockfall analysis from UAV-based photogrammetry and 3D models of a cliff area.
Drones,
8(1), 31.
https://doi.org/10.3390/drones8010031
Delashmit, W. H., & Manry, M. T. (2005).
Recent developments in multilayer perceptron neural networks. Paper presented of the 17th Annual Memphis Area Engineering and Science Conference, MAESC (7).
https://ipnnl.uta.edu/publications/recent/
Elmoulat, M., Brahim, L. A., Elmahsani, A., Abdelouafi, A., & Mastere, M. (2021). Mass movements susceptibility mapping by using heuristic approach. Case study: province of Tétouan (North of Morocco).
Geoenvironmental Disasters,
8, 1-19.
https://doi.org/10.1186/s40677-021-00192-0
Emami, S. N., & Yousefi, S. (2023). Comparison of the efficiency of some machine learning models for mass movement susceptibility mapping (Case study: Chaharmahal and Bakhtiari province).
Scientific Quarterly Journal of Geosciences,
33(2), 183-204. [In Persian]
https://doi.org/10.22071/gsj.2022.345954.2003
Esfandiary Darabad, F., Rahimi, M., Navidfar, A., & Mehrvarz, A. (2020). Assessment of landslide sensitivity by neural network method and Vector machine algorithm (Case study: Heyran Road -Ardebil province).
Quantitative Geomorphological Research,
9(3), 18-33. [In Persian]
https://www.geomorphologyjournal.ir/article_122210.html
Eskandari, M. R., Nazarpour, A., & Khayat, N. (2023). Rockfall risk Mapping Using Multiple Criteria Decision Making (MCDM) AHP, and Fuzzy-Gamma methods in Khorramabad-Pol-e-Zal Freeway.
Journal of Natural Environmental Hazards,
12(35), 139-156. [In Persian]
https://doi.org/10.22111/jneh.2023.41400.1872
Fanos, A. M., Pradhan, B., Alamri, A., & Lee, C. W. (2020). Machine learning-based and 3d kinematic models for rockfall hazard assessment using LiDAR data and GIS.
Remote Sensing, 12(11), 1755.
https://doi.org/10.3390/rs12111755
Gasemyan, B., Abedini, M., Roostai, S., & Shirzadi, A. (2021). Landslide susceptibility assessment using a novel ensemble algorithm based model (Case Study: Kamyaran city, Kurdistan province).
Quantitative Geomorphological Research,
9(4), 130-146. [In Persian]
https://dor.isc.ac/dor/20.1001.1.22519424.1400.9.4.8.6
Guzzetti, F., Reichenbach, P., & Ghigi, S. (2004). Rockfall hazard and risk assessment along a transportation corridor in the Nera Valley, Central Italy. Environmental management, 34(2), 191-208. https://doi.org/10.1007/s00267-003-0021-6
Jaccard, C. J., Abbruzzese, J. M., & Howald, E. P. (2020). An evaluation of the performance of rock fall protection measures and their role in hazard zoning.
Natural Hazards,
104(1), 459-491.
https://doi.org/10.1007/s11069-020-04177-4
Jahandar, S., Aghagolzadeh, A., & Kazemitabar, J. (2020). Blind Recognition of Block Code Parameters in the Presence of High SNR Using Statistical Techniques.
Journal of Advanced Defense Science & Technology,
10(4), 373-381. [In Persian]
https://dor.isc.ac/dor/20.1001.1.26762935.1398.10.4.4.2
Jiang, N., Li, H. B., & Zhou, J. W. (2021). Quantitative hazard analysis and mitigation measures of rockfall in a high-frequency rockfall region.
Bulletin of Engineering Geology and the Environment, 80, 3439-3456.
https://doi.org/10.1007/s10064-021-02137-1
Lee, S., Ryu, J. H., Lee, M. J., & Won, J. S. (2006). The application of artificial neural networks to landslide susceptibility mapping at Janghung, Korea.
Mathematical Geology,
38, 199-220.
https://doi.org/10.1007/s11004-005-9012-x
Lucks, L., Stilla, U., Hoegner, L., & Holst, C. (2024). Photogrammetric rockfall monitoring in Alpine environments using M3C2 and tracked motion vectors.
ISPRS Open Journal of Photogrammetry and Remote Sensing, 100058.
https://doi.org/10.1016/j.ophoto.2024.100058
Nakajima, S., Abe, K., Shinoda, M., Nakamura, S., & Nakamura, H. (2021). Experimental study on impact force due to collision of rockfall and sliding soil mass caused by seismic slope failure.
Landslides,
18, 195-216.
https://doi.org/10.1007/s10346-020-01461-z
Nanehkaran, Y. A., Licai, Z., Chen, J., Azarafza, M., & Yimin, M. (2022). Application of artificial neural networks and geographic information system to provide hazard susceptibility maps for rockfall failures. Environmental Earth Sciences, 81(19), 475. https://doi.org/10.1007/s12665-022-10603-6
Negahban, S., Jahan Tighmand, S., & Rahimi Herabadi, S. (2020). Explaining the Position of Positivism and Critical Methods in Geomorphic Hazard (Case: Rockfalls Hazard on Rudbar-Rostamabad Freeway).
Quantitative Geomorphological Research,
9(1), 52-66. [In Persian]
https://www.geomorphologyjournal.ir/article_109534.html
Ramdhani, Y., Mustofa, H., Topiq, S., Alamsyah, D. P., Setiawan, S., & Susanti, L. (2022).
Sentiment analysis twitter based lexicon and multilayer perceptron algorithm. Paper presented of the 10th International Conference on Cyber and IT Service Management (CITSM) ,Yogyakarta, Indonesia
, 1-6.
https://doi.org/10.1109/CITSM56380.2022.9936029
Rana, A., Rawat, A. S., Bijalwan, A., & Bahuguna, H. (2018).
Application of multi layer (perceptron) artificial neural network in the diagnosis system: a systematic review. Paper presented of the 2018 International conference on research in intelligent and computing in engineering (RICE) , 1-6.
https://doi.org/10.1109/RICE.2018.8509069
Riedmiller, M., & Lernen, A. (2014). Multi layer perceptron. In Machine Learning Lab Special Lecture. Germany: University of Freiburg.
Vahabzadeh, M. (2023). Risk zoning of skirts on Khalkhal road to Shahroud using artificial neural network system. Master's thesis, University of Mohaghegh Ardabili. [In Persian]
Yan, J., Zeng, S., Tian, B., Cao, Y., Yang, W., & Zhu, F. (2023). Relationship between highway geometric characteristics and accident risk: A multilayer perceptron model (MLP) approach.
Sustainability,
15(3), 1893.
https://doi.org/10.3390/su15031893
Zhao, H., Tian, W. P., Li, J. C., & Ma, B. C. (2018). Hazard zoning of trunk highway slope disasters: a case study in northern Shaanxi, China.
Bulletin of Engineering Geology and the Environment, 77, 1355-1364.
https://doi.org/10.1007/s10064-017-1178-1
Send comment about this article