Forecasting Hazardous Heat Waves in East Azerbaijan by Modeling the Sixth Climate Change Report

Document Type : Research Article

Authors

1 Assistant Professor of Climatology, Sayyed Jamaleddin Asadabadi University, Asadabad, Iran.

2 Tabriz University

Abstract

Heat waves are among the most dangerous weather threats related to global warming and climate change. Two databases were used to predict the spatial changes in the intensity of heat waves in East Azarbaijan province. The daily data of the maximum temperature in 5 synoptic stations of the province inlcuding Tabriz, Maragheh, Jolfa, Ahar and Mianeh for the time period from 1981 to 2021 AD as the period of historical-base data were used. The output of the selected CanESM model under the dual economic-social scenario SSP1 is the result of the Coupled Model Intercomparison Project Phase 6 (CMIP6) in the future period from 2022 to 2065. The validation of the data of the basic period with the future period was done with standard measures and with the step-by-step regression technique, the intensity of heat waves in the province was explained. The results indicate that the intensity of heat waves will increase until 2065 in all the investigated stations and it will cover a large area of ​​the province. So, in the next half of the century, the intensity of heat waves in Tabriz will be 1.3 °C, in Maragheh will be 1 °C, in Julfa will be 0.7 °C, in Ahar will be 1 °C and in Mianeh it will be 1.4 °C. Moreover, with the warming of the earth's air due to the impact of global climate changes, smaller heat waves join together and will create more intense, bigger, and lasting heat waves. The results showed that with the decrease in latitude in this province and the proximity to low-lying and low-altitude areas, the frequency and intensity of heat waves will also increase.

Graphical Abstract

Forecasting Hazardous Heat Waves in East Azerbaijan by Modeling the Sixth Climate Change Report

Keywords


اسمعیل­نژاد، مرتضی؛ خسروی، محمود؛ علیجانی، بهلول؛ مسعودیان، سید ابوالفضل؛ 1392. شناسایی امواج گرمایی ایران، مجله جغرافیا و توسعه. شماره 33. 54-39. 10.22111/GDIJ.2013.1321/ https://doi.org
 اعتمادیان، الهه؛ دوستان، رضا؛ 1396. تحلیل فضایی امواج گرمایی ایران. نشریه تحلیل فضایی مخاطرات محیطی. شماره 1، 32-17. http://jsaeh.khu.ac.ir/article-1-2697-fa.html
بهاروندی، نسیبه؛ مجرد، فیروز؛ معصوم­پور، جعفر؛ 1399. شناسایی امواج گرمایی و تحلیل تغییرات زمانی- مکانی آنها در ایران، نشریه تحقیقات کاربردی علوم جغرافیایی. شماره 59. 58-39.http://jgs.khu.ac.ir/article-1-3146-fa.html
جهانبخش، سعید؛ قویدل، فاطمه؛ اشجعی، محمد؛ 1394. شناسایی، طبقه­بندی و تحلیل همدیدی امواج گرمایی به منظور کاهش مخاطرات انسانی در شمال غرب ایران. دانش مخاطرات. شماره 4. 391-377. 10.22059/JHSCI.2015.58265
حدادی، حسین؛ 1388. تحلیل زمانی و مکانی امواج گرما در ایران. پایان­نامه کارشناسی ارشد اقلیم­شناسی در برنامه­ریزی محیطی. دانشکده علوم انسانی و اجتماعی، گروه جغرافیا. دانشگاه تربیت مدرس. https://doi.org/10.22111/GDIJ.2014.1561
دارند، محمد؛ 1393. شناسایی و تحلیل زمانی – مکانی امواج گرمایی ایران زمین. مجله جغرافیا و توسعه. شماره 35، 180-167. https://doi.org/10.22111/GDIJ.2014.1561
صادقی، سلیمان؛ دوستان، رضا؛ صانعی، معصومه؛ 1394. تحلیل فضایی-زمانی امواج گرمایی خراسان رضوی. فصلنامه جغرافیایی سرزمین، شماره 47، 31-19. https://sarzamin.srbiau.ac.ir/article_9633.html
علیزاده، امین؛ 1391. اصول هیدرولوژی کاربردی. انتشارات دانشگاه امام رضا. مشهد: چاپ 34. https://www.gisoom.com/book/11153333
قویدل­رحیمی، یوسف؛ 1390. شناسایی، طبقه­بندی و تحلیل سینوپتیک موج ابرگرم تابستان 1389 در ایران. مطالعات جغرافیایی مناطق خشک، شماره 3. 100-85.https://jargs.hsu.ac.ir/article_161274.html
یزدان­پناه، حجت­الله؛ علیزاده، تیمور؛ 1390. برآورد احتمال وقوع امواج گرمایی با دوره­های تداوم مختلف در استان کرمان به کمک زنجیره مارکف. تحقیقات جغرافیایی. شماره 102. 71-51. https://journals.ui.ac.ir/article_17901.html
 
Astrom D, Forsberg B, Roclov J., 2011. Heat wave impact on morbidity and mortality in the elderly population: A review of recent studies, Maturities, 69: 99–105.
Atilgan A, Yucel A, Oz H, Saltuk B., 2016.  Determination of Heating and Cooling Degree-Days for Broiler Breeding in the Tigris basin, Scientific. 20: 2285-2290.
Auroop R, Gangulya K. S, David J, Marcia B. S, Esther S. P, Nagendra S, John B. D, Lawrence B., 2009. Higher Trends but Larger Uncertainty and Geographic Variability in 21st Century Temperature and Heat Waves, 37: 301-315.
Baldi M, Massimiliano P, Francesco C., 2004. Heat Wave in the Mediterranean Region Analysis and Model Results. Institute of Biometeorology, CNR. ROM. ITALY 10(5). https://ams.confex.com/ams/Annual2005/techprogram/paper_85262.htm
Confalonieri U, Menne B, Akhtar R, Ebi K.L, Hauengue M, Kovats R.S, Revich B, Woodward, A., 2007. Human health. Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK.
Cox R, Martin D, Carsten R, Susanne B., 2015. Simple future weather files for estimating heating and cooling demand, Building and Environment. 83: 104-114.
D, Woodward A., 2003. Climate Change and Human Health, Risks and Responses, World Health Organization, Geneva. https://apps.who.int/iris/handle/10665/42742
Ding T, Qian W, Yan Z ., 2010. Changes in hot days and heat waves in China during 1961–2007, International Journal of Climatology. 30:1452-1462.
Elizabeth M, Federico C., 2013. Variability and trends of heating degree-days in Argentina, International Journal of Climatology. 33: 2352-2361.
Elizbarashvili M, Chartolani G, Khardziani T. 2018. Variations and trends of heating and cooling degree-days in Georgia for 1961–1990 year period, Annals of Agrarian Science. 16: 152-159. https://www.sciencedirect.com/science/article/pii/S1512188718300800
Farooq M, Bramley H, Palta J. A, Kadambot H. M. S., 2011. Heat Stress in Wheat during Reproductive and Grain-Filling Phases, Critical Reviews in Plant Sciences, 30: 491–507. https://doi.org/10.1080/07352689.2011.615687
Folland, C.K., T.R. Karl, J.R. Christy, R.A. Clarke, G.V. Gruza, J. Jouzel, M.E. Mann, J. Oerlemans, M.J. Salinger and S.-W. Wang., 2001. Observed Climate Variability and Change. In Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change[Houghton, J.T., Y. Ding, D.J. Griggs, M. Noguer, P.J. van der Linden, X. Dai, K. Maskell, C.A. Johnson (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. https://www.ipcc.ch/site/assets/uploads/2018/03/WGI_TAR_full_report.pdf
Fricko F, Havlik P, Rogeli J, Klimont Z, Riahi K., 2016. The marker quantification of the Shared Socioeconomic Pathway 2: A middle-of-the-road scenario for the 21st century. Global Environmental Change, 42: 251-267.
Haddow G, Bullock J.A, Haddow K., 2008. Global warming, natural hazards and emergency management: CRC Press.
Intergovernmental Panel on Climate Change (IPCC)., 2007. Summary for policy maker’s climate change: The physical science basis. Contribution of working group I to the Fourth assessment report. Cambridge University Press, Cambridge, UK.
JenSu H, JeanChen M, YaoLin Ch, ChunLung SH, ChihWu P, ISung T., 2013. Relationship between heat index and mortality of 6 major cities in Taiwan, Science of the Total Environment, 442: 275–281.
Koppe C, Kovats S, Jendritzky G, Menne B., 2004. Heat waves: risks and responses. Health and Global Environmental Change Series, World Health Organization. Regional Office for Europe. https://apps.who.int/iris/handle/10665/107552.
Pusat S, Ekmekci I., 2015. A study on degree-day regions of Turkey, Energy Efficiency. 9: 525-532. https://link.springer.com/article/10.1007/s12053-015-9378-7
Rosa M, Vincenzo B, Federico S, Luca T. A., 2014. Heating and cooling building energy demand evaluation; a simplified model and a modified degree-day’s approach, Theoretical and applied climatology, 96: 180-194.
Sequera P, Rhone O, González J. E, Ghebreegziabher A. T, Bornstein R, Lebassi B., 2011. Impacts of climate changes in the Northern Pacific Coast on related regional scale energy demands. In ASME 2011 5th International Conference on Energy Sustainability. 249-257. https://asmedigitalcollection.asme.org/ES/proceedings-abstract/ES2011/54686/249/354538
Twardosz R, Ursezula K. C., 2013. Exceptionally Hot Summers in Central and Eastern Europe (1951–2010). Theron. Appl. Climatol, 112: 234-250.
Wolf T, McGregor G., 2013. The development of a heat wave vulnerability index for London, United Kingdom. Weather and Climate Extremes, 1: 59-68.
Zampieri M, Russo S, Di Sabatino S, Michetti M, Scoccimarro E, Gualdi S., 2016. Global Assessment of Heat Wave Magnitudes from 1901 to 2010 and Implications for the River Discharge of the Alps, Science of the Total Environment, 571: 1330-1339. https://www.sciencedirect.com/science/article/abs/pii/S0048969716314516
CAPTCHA Image