Investigation of the life cycle of the major sudden stratospheric warming in the Northern Hemisphere

Document Type : Research Article

Author

Atmospheric Science and Meteorological Research (ASMERC), Tehran, Iran

Abstract

In this study we have used the daily mean data from the Modern Era Retrospective Analysis for Research and Applications version 2 (MERRA2) assimilated data. From the MERRA2 data, zonal wind and temperature were obtained at 10hPa from 01 January 1979 to 04 June 2020.The temperature averaged around the polar cap for latitudes north of 60°N. This is a good measure of the overall temperature in the polar vortex.  Investigation of the polar temperature and zonal-mean zonal wind at 10hPa, is detected 19 and 13 major and minor SSWs events, respectively. According to the shows a rapid increase from 201.6K on 12 January to 253.4K on 23 January 2009 (∆T=51.8K). This is the largest increase in the polar temperature per 11-day in the entire MERRA-2 data set starting from January 1979 to June 2020.
In this study life cycle of major SSWs is defined by dividing it into five periods. Onset (the first day of maximum zonal-mean zonal wind is reduced), growth (from onset day to zero day), maturation (from zero day to minimum zonal-mean zonal wind), decline (from minimum value to decay day) and decay (the first day of the easterly wind reversal to westerly) of typical SSWs. The result shows the shortest and longest growth periods, with 6 and 37 days, respectively, were recorded in the cases of January 6, 2013 and January 23, 1987. The longest maturation period, with 17 days of continuity, is dedicated to the warming of January 23, 1987. The longest decline period in this statistical period is 26 days, which is related to the warming of January 24, 2009. The shortest and longest life cycle in this statistical period are dedicated to cases on February 1, 2017 and January 23, 1987, respectively.

Keywords


 ریوندی، امیر؛ محمدی‌ها، امیر؛ تقی‌زاده، احسان؛ 1393. تفسیر سرمای شدید زمستانی شرق ایران با استفاده از مؤلفه‌های استراتوسفری. شانزدهمین کنفرانس ژئوفیزیک ایران. 23 تا 25 اردیبهشت 1393.
کرمی، خلیل؛ قادر، سرمد؛ موسوی، سید محمد؛ 1397. شناسایی حالت­های بازتاب، جذب و انتشار امواج راسبی انتشار یابنده بالاسو. مجله ژئوفیزیک ایران. شماره 2. صص 37-23.
مرادی، محمد؛ 1399. ارتباط گرمایش ناگهانی پوشن‌سپهر نوع اصلی با تغییرات تاوه قطبی در دوره آماری 2019-1979. مجله فیزیک زمین فضا. شماره 3. صص 620-603.
میررکنی، مجید؛ محب‌الحجه، علیرضا؛ احمدی‌گیوی، فرهنگ؛ 1392. نقش گردش‌های پوشن‌سپهر در بی‌هنجاری‌های اقلیمی زمستان‌های 1386 و 1388. مجله ژئوفیزیک. شماره 1. صص 104-86.
 
Ageyeva,VYu., Gruzdev, AN., Elokhov, AS., Mokhov, I.I. and Zueva, NE., 2017. Sudden Stratospheric Warmings: Statistical Character is tics and Influence on NO2 and O3 Total Contents. Atmospheric and Oceanic Physics, 53(5): 477–486.
Butler, AH. and Gerber, EP., 2018. Optimizing the definition of a sudden stratospheric warming. Journal of climate, 31: 2337–2344.
Butler, AH., Seidel, DJ., Hardiman, SC., Butchart, N., Birner, T. and Match, A., 2015. Defining sudden stratospheric warmings. American meteorological society, 96: 1913–1928.
Butler, AH., Sjoberg, JP., Seidel, DJ., and Rosenlof, KH., 2017. A sudden stratospheric warming compendium: Earth Syst. Sci. Data, 9: 63–76.
Charlton, A J. and Polvani, L., 2007. A new look at stratospheric sudden warmings. Part I. Climatology and modeling benchmarks. Journal of climate, 20: 449–469.
Choy, H., Kim, BM. and Choy, W., 2019. Type classification of sudden stratospheric warming based on pre- and postwarming periods. Journal of climate, 32: 2349-2367.
Cohen, J., and Jones,J., 2011.Tropospheric precursors and stratospheric warmings. Journal of climate, 24: 1780–1790.
Coy, L. and Pawson, S., 2019. The major stratospheric sudden warming of january2013. Analyses and forecasts in the GEOS-5 data assimilation system. https:// ntrs.nasa.gov/ search.jsp?R=20140012679 2019-12-07T17:27:26+00:00Z
Hengde, Z., Shouting, G. and Weisong, L., 2007. Study on two categories of sudden stratospheric warming. Acta meteorological sinica, 21: 450-464.
Kim, J., Son,SW., Gerber, EP. and Park, HS., 2017. Defining sudden stratospheric warming in climate models. Accounting for biases in model climatologies . Journal of climate, 30: 5529-5546.
Limpasuvan, V., Thompson, DWJ., Hartmann, D L., 2004. The life cycle of the northern hemisphere sudden stratospheric warmings. Journal of climate, 17:2584–2596. 
McInturff, RM.1978. Stratospheric warmings: Synoptic, dynamic and general-circulation aspects (Tech. Rep. No. 541, Ref. Publ. 1017).
Rao, J., Ren, R., Chen, HYuY., and Zhou, Y., 2018. The stratospheric sudden warming event in February 2018 and its prediction by a climate system model. Journal of geophysics research atmospheric, 123: 13332–13345.  
Suitland, Md. (available online at https:// ntrs.nasa.gov/ archive/ nasa/ casi.ntrs.nasa.gov/ 19780010687.pdf).
Tao, M., Konopka, P., Ploeger, F., Grooß, J.-U., Müller, R.,Volk, CM., Walker, KA. and Riese, M., 2015. Impact of the 2009 major sudden stratospheric warming on the composition of the stratosphere. Atmospheric chemistry and physics, 15: 8695–8715.
Vargin,PN. and Kiryushov, BM., 2019. Major Sudden Stratospheric Warming in the Arctic in February 2018 and Its Impacts on the Troposphere, Mesosphere, and Ozone Layer. Russian Meteorology and Hydrology, 44:112–123.
Yamazaki, Y., Matthias, V., Miyoshi, Y.,Stolle, C., Siddiqui, T., Kervalishvili, G. , Lastovicka, J., Kozubek, M., Ward, W., Themens, DR., Kirstoffffersen, S. and Alken, P., 2019. September 2019 Antarctic sudden stratospheric warming: quasi-6-day wave burst and ionospheric effects. Journal of geophysical research, Space physics, 123: 40
CAPTCHA Image