Prediction of Landuse Changes Applying Knowledge-Based and Markov Chain Methods

Document Type : Research Article

Authors

1 PhD graduate, Department of Range and Watershed Management, Faculty of Natural Resources, Urmia University, Urmia, Iran

2 Associate Professor, Department of Range and Watershed Management, Faculty of Natural Resources, Urmia University, Urmia, Iran

3 Professor Department Faculty of Science and Engineering, Macquarie University, Sydney, NSW, Australia.

Abstract

The water level reduction in Lake Urmia and its effects on the surrounding environment has been among the important national and international challenges in the past two decades. Therefore, this study aimed to investigate the current status and predict the future state of land use in the Gadarchai watershed, located in West Azerbaijan Province, which is one of the important sub-watersheds of the Lake Urmia basin. For this purpose, Sentinel-2 satellite images for 2016, 2020, and 2022 were obtained from the European Union's Copernicus website. Then, preprocessing methods were applied in various software environments, and the relevant images were sent to the eCognition software environment. In this environment, using various basic and object-oriented methods (especially segmentation and production of different coefficient layers), the nearest neighbor classification method was implemented, and land use maps were produced. Finally, the Markov chain model was used to predict changes in land use in future years. To verify the accuracy of the Markov chain model, the predicted land use change map for 2022 was compared with the 2022 classification map. The research results showed that with the application of basic methods, especially nearest neighbor classification, it is possible to produce land use maps with high accuracy (90% kappa coefficient). Also, by applying the Markov model, land use change maps with an acceptable accuracy level (around 80%) are possible. The final results indicate that by the year 2028, agricultural land use (13.89%), dry farming (14.1%), residential areas (0.33%), and salt pans of Lake Urmia (26%) will increase. It should be noted that the soil use class will decrease by 10.26%, and pastures will decrease by 5.35%. Overall, the final models demonstrate the high accuracy of basic and object-oriented methods and the suitable performance of the Markov model in the process of studying land use changes.

Keywords

Main Subjects


  • میثاق، نورالدین؛ نیسانی سامانی، نجمه؛ تومانیان، آرا. (1397). شبیه‌سازی رشد شهری تبریز با استفاده از مدل CA-Markov و تصمیم‌گیری چندمعیاره. پژوهش‌های جغرافیای انسانی، 50 (1)،217-231.

    doi: 10.22059/JHGR.2017.224800.1007382

    جویباری مقدم، یاسر؛ اخوندزاده، مهدی؛ سراجیان، محمدرضا. (1393). تخمین سطح پوشش برف با استفاده از تصاویر ماهواره‌ای Landset8. اولین کنفرانس بین‌المللی مهندسی محیط زیست، تهران، مرکز راهکارهای دستیابی به توسعه پایدار. 7 صفحه.

    رسولی، علی اکبر. (1378). مبانی سنجش‌ازدور کاربردی با تاکید بر پردازش تصاویر ماهواره‌ای، چاپ اول. انتشارات دانشگاه تبریز.

     

    • Abedini, M., Pasban, A., & nezafat taklhe, B. (2023). Evaluation and Preparation of Land Use Map of Nirchai Watershed Using Object Oriented Method. Geography and Human Relationships, 5(4), 318-328. [In Persian] https://doi.org/22034/gahr.2023.393602.1849
    • Aburas, M.M., Abdullah, S.H., Ramli, M.F., Ash'aari, Z.H., & Ahamad, M.S.S. (2018). Simulating and monitoring future land-use trends using CA-Markov and LCM Models. In IOP Conference Series: Earth and Environmental science,‌ 169(1). https://doi.org/1088/1755-1315/169/1/012050
    • Abiyat, M., Attar Roshan, S., & Abiyat, M. (2020). Evaluating and Predicting Vegetation Changes Pertaining to Land Use Changes using LCM Model and CA-Markov Chain (Case Study: Ahvaz City). Journal of Geography and Environmental Hazards, 9(3), 183-204. [In Persian] https://doi.org/10.22067/geoeh.2020.67236.0
    • Armenteras, D., Murcia, U., González, T.M., Barón, O.J., & Arias, J.E. )2019(. Scenarios of Land Use and Land Cover Change for NW Amazonia: Impact on forest intactness. Global Ecology and conservation, 17, 1-13. https://doi.org/10.1016/j.gecco.2019.e00567
    • Birhanu, A., Masih, I., van der Zaag, P., Nyssen, J., & Cai, X., (2019). Impacts of Land Use and Land Cover Changes on Hydrology of the Gumara Catchment. Ethiopia, 4th International Conference on Ecohydrology, Soil and Climate Change, 109, 1-78. https://doi.org/10.1016/j.pce.2019.01.006
    • Blaschke, T. (2010). Object Based Image Analysis for Remote Sensing. ISPRS Journal of Photogrammetry and Remote Sensing, 65(1), 2-16.‌ https://doi.org/10.1016/j.isprsjprs.2009.06.004
    • Donnay, J.P., Longley, P.A., & Barnsley, M.J. (2001). Remote Sensing and Urban Analysis: A Research Agenda. London, CRC Press. https://doi.org/10.1201/9781482268119
    • Ebrahimy, H.,  Rasuly, A., & Ahmadpour, A. (2019). Modeling dynamic changes of Land Use with Object Based Image Analysis and CA-Markov approach (Case study: Shiraz city). Geographical Data, 27(108), 137-149. [In Persian] https://doi.org/10.22131/sepehr.2019.34625
    • Ghafari, S., Moradi, H.R., & Modarres, R. (2018). Comparison of Object-Oriented and Pixel-Based Classification Methods for Land Use Mapping (Case Study: Isfahan-Borkhar, Najafabad and Chadegan Plains). Journal of Remote sensing and Geographical information system for natural Resources, 9(1), 40-57. [In Persian] https://journals.iau.ir/article_540415.html
    • Hamad, R., Balzter, H., & Kolo, K. (2018). Predicting Land Use/Land Cover Changes Using a Ca-Markov Model Under Two Different Scenarios. Sustainability, 10(10). https://doi.org/10.3390/su10103421
    • HUA, A. (2017). Application of CA-Markov Model and Land Use/Land Cover Changes in Malacca River Watershed, Malaysia. Applied Ecology and Environmental Research, 15 (4), 605-922. http://dx.doi.org/10.15666/aeer/1504_605622
    • Igué, A.M., Houndagba C.J., Gaiser, T., & Stahr, K., (2022). Accuracy of the Land Use/Cover Classification in the Oueme Basin of Benin (West Africa). International Journal of AgriScience, 2(2), 174-184. https://www.cabidigitallibrary.org/doi/pdf/10.5555/20123239823
    • Kangabam, R.D., Selvaraj, M., & Govindaraju, M. )2019(. Assessment of Land Use Land Cover Changes in Loktak Lake in Indo-Burma Biodiversity Hotspot Using Geospatial Techniques. The Egyptian Journal of Remote Sensing and Space Science, 22 (2), 137-143. https://doi.org/10.1016/j.ejrs.2018.04.005.
    • Kumar, K. S., Bhaskar, P. U., & Padmakumari, K. (2015). Application of Land Change Modeler for Prediction of Future Land Use Land Cover: A Case Study of Vijayawada City. International Journal of Advanced Technology in Engineering and Science, 3(01), 773-783. https://cdn.usharama.edu.in/documents/civil-eng-faculty-publications/k-sundara-kumar-research-scholar.pdf
    • Mirakhorlo, M., & Rahimzadegan, M. (2018). Integration of SimWeight and Markov Chain to Predict Land Use of Lavasanat Basin. Numerical Methods in Civil Engineering, 2(4), 146-158. [In Persian] https://www.magiran.com/p2062797
    • Moe, I.R., Kure, S., Januriyadi, N.F., Farid, M., Udo, K., Kazama, S., Koshimura, S., 2017. Future Projection of Flood Inundation Considering Land-Use Changes and Land Subsidence in Jakarta, Indonesia. Hydrological Research Letters, 11(2), 99-105. https://doi.org/10.3178/hrl.11.99.
    • Mujiono, T.L., Harmantyo, D., Rukmana, I.P., & Nadia, Z. (2017). Simulation of Land Use Change and Effect on Potential Deforestation Using Markov Chain-Cellular Automata. In AIP Conference 1862(1), 1-9. https://doi.org/10.1063/1.4991281
    • Munthali, M., Botai, J., Davis, N., Ade La Abiodun, M. (2019). Muti-Temporal Analysis of Land Use and Land Cover Change Detection for Dedza District of Malawi Using Geospatial Techniques. Applied Engineering, 14(5), 1151-1162.  http://hdl.handle.net/2263/71103.
    • Rasouli, A.A., Asgarova, M.M., & Safarov, S.H. (2021). Mapping of LC/LU Changes Inside the Aghdam District of the Karabakh Dconomics Region Applying Object-Based Satellite Image Analysis. Journal of Life Sciences & Biomedicine, 3(76), 54-69.  http://dx.doi.org/10.29228/jlsb.22
    • Rasouli, A.A., Safarov S.H., Asgarova M., Safarov E.S., & Milani M. (2021). Detection and Mapping of Green-Cover and Landuse Changes by Advanced Satellite Image Processing Techniques (A Case Study: Azerbaijan Eastern Zangezur Economic Region). ANAS Transactions, Earth Sciences, 2, 27-45. https://doi.org/10.33677/ggianas20220200080
    • Rasuly Pirouzian, A.A., Chnung,K., Moharrami, M., & Derafshi, A. (2015). Signifying of the Urmia Lake Changes Using Objected-Oriented Image Processing Techniques. Journal of Applied Hydrology, 2(2), 13-23. [In Persian] https://www.researchgate.net/publication/335107512_Signifying_of_the_Urmia_Lake_changes_using_Object-Oriented_image_processing_techniques/citations
    • - Samie, A., Deng, X., Jia, S., & Chen, D. (2017). Scenario-Based Simulation on Dynamics of Land-Use-Land-Cover Change in Punjab Province, Pakistan. Sustainability, 9(8), 1-17.   https://doi.org/10.3390/su9081285
    • Sarabuddin Mondal, M., Sharma, N., Kappas, M., & Garg, P. (2019). CA Markov Modeling of Land Use/Land Cover Dynamics and Sensitivity Analysis, Identify Sensitive Parameters. Remote Sensing and Spatial Information Science, 2 (13), 723-729. https://doi.org/10.5194/isprs-archives-XLII-2-W13-723-2019

    -          Yamani, M., & Abbasi, M. (2020). Evaluation of Flooding below Gadar Catchments Based on Morphometric Parameters and Statistical Correlation. Town and Country Planning, 12(1), 205-224. [In Persian] https://jtcp.ut.ac.ir/article_74823.html

    -          Tzotsos, A., & Argialas, D. (2008). Support vector machine classification for object-based image analysis. Object-based image analysis: Spatial concepts for knowledge-driven remote sensing applications, 663-677. https://link.springer.com/chapter/10.1007/978-3-540-77058-9_36

    • Yirsaw, E., Wu, W., Shi, X., Temesgeh, H., & Bekele, B. (2017). Land Use and Land Cover Change Modeling and the Prediction of Subsequent Changes in Ecosystem Service Values in a Coastal Area of China, the Su-Xi-Change Region. Sustainability, 9 (1204), 2-17. https://doi.org/10.3390/su9071204.

     

     

     

CAPTCHA Image