The Role of Landform Evolution in the Changes of Pedosphere Carbon Dynamic

Document Type : Research Article

Authors

1 Postgraduate Researcher in Soil Science, Ferdowsi University of Mashhad, Mashhad, Iran

2 Associate Professor in Morphology, Ferdowsi University of Mashhad, Mashhad, Iran

3 Professor in Soil Science , Ferdowsi University of Mashhad, Mashhad, Iran

Abstract

The formation and evolution of the alluvial fans is drastically affected by climate changes. These landforms play an important role in the exchange of carbon between the atmosphere and pedosphere. The aim of this study was to evaluate the way that the evolution of alluvial fan ages can affect soil carbon dynamics. This study measured factors controlling the C mineralization ratio and carbon dioxide flux within the soil environments belonging to different alluvial fan ages (including young fans, intermediate fans, and old fans) located at the base of the Aladagh Mountain hillslope. The intermediate alluvial fans exhibited more stable environments compared with other fans. Furthermore, the position of the intermediate fans on lowlands of the old fans increased the organic carbon concentration, exchangeable cations, and fine fraction. On the other hand, the lower transport capacity of the erosion processes decreased lower micro-aggregate losses in comparison with other fans. As a result, the organic carbon contained in the micro-aggregates is inaccessible to microbial decomposition over long-term timescale. The old fans exhibited a significant decrease of clay fraction, which could be due to their positions on uplands and their susceptibility to gully erosion processes, causing the transportation of a larger amount of OC-rich topsoil. This condition degrades soil structure and weakens aggregate stability within the old fans, encouraging more vulnerability of organic carbon to microbial decomposition. The geomorphological differences of the alluvial fan surfaces in different ages stimulated the variation of soil carbon dynamics. 

Graphical Abstract

The Role of Landform Evolution in the Changes of Pedosphere Carbon Dynamic

Keywords


ایمنی، سپیده؛ صدوق، حسن؛ بهرامی، شهرام؛ محرابیان، احمدرضا؛ نصرتی، کاظم؛ 1399. بررسی رابطه پراکنش جوامع گیاهی با ویژگی­های فیزیکی و شیمیایی خاک در لندفرم‌های سطح مخروط افکنه‌ها (مطالعه موردی: مخروط افکنه های جنوب غرب میامی). پژوهش‌های ژئومورفولوژی کمّی. 9(2). صص 21-43.‎
بهرامی، شهرام؛ بیرامعلی، فرشته؛ فیله کش، اسماعیل؛ قهرمان، کاوه؛ 1397. بررسی تأثیر ژئومورفولوژی در نوع و تراکم پوشش گیاهی مخروط‌ افکنه‌های فشتنق-‌سبزوار. فصلنامه جغرافیا و توسعه. 16(52). صص 193-210.‎
جعفری، غلام حسن؛ محمدی، هژیر؛ 1398. بررسی رفتار آشوبناک فرایندهای ژئومورفولوژیکی حوضۀ آبریز قزل‌اوزن. جغرافیا و مخاطرات محیطی. 8(1). صص 1-23.‎
مددی، عقیل؛ مختاری، داود؛ شیرزادی، حمدیه؛ ارسلان، مهرورز؛ 1395. بررسی عملکرد نئوتکتونیک بر مخروط افکنه‏­ها با تاکید بر توان لرزه‏ خیزی گسل‌ها (منطقه موردمطالعه: دامنه‌های شمال غرب سهند). جغرافیا و مخاطرات محیطی. 5(2). صص 31-41.‎    
 
 
Bahrami, S., & Ghahraman, K., 2019. Geomorphological controls on soil fertility of semi-arid alluvial fans: A case study of the Joghatay Mountains, Northeast Iran. Catena, 176, 145-158. https://doi.org/10.1016/j.catena.2019.01.016
Blake, G.R., & Hartge, K.H., 1986. Bulk density. In A. Klute (Ed.), Methods of soil analysis. Part 1. Madison, WI: Physical and Min-eralogical Methods. American Society of Agronomy and Soil Science, pp 363–375. https:// onlinelibrary .wiley. com/ doi/ abs/ 10.1002 /gea. 3340050110
Bremner, J. M., 1996. Nitrogen total. In D. L. Sparks (Ed.), Methods of soil analysis (Vol. 3). Part. (pp. 1085–1121). Madison, WI: Chemical Methods. SSSA‐ASA. https:// doi.org/ 10.2136/ sssabookser5.3.c37
Corre M, Schnabel R, & Shaffer JA., 1999. Evaluation of soil organic carbon under forests, cool-season and warm-season grasses in the northeastern US. Soil Biol Biochem. 31(11):1531–1539. https://doi.org/10.1016/S0038-0717(99)00074-7
David, D. J., 1960. The determination of exchangeable sodium, potassium, calcium and magnesium in soils by atomic absorption spectrophotometry. Analyst, 85(1012), 495–503. https://pubs.rsc.org/en/content/articlelanding/1960/an/an9608500495
Dickerson, R. P., Bierman, P. R., & Cocks, G., 2015. Alluvial fan surfaces and an age-related stability for cultural resource preservation: Nevada Test and Training Range, Nellis Air Force Base, Nevada, USA. Journal of Archaeological Science: Reports, 2, 551-568. https://doi.org/10.1016/j.jasrep.2015.05.002
Field, J., 2001. Channel avulsion on alluvial fans in southern Arizona. Geomorphology, 37(1-2), 93-104. https://doi.org/10.1016/S0169-555X(00)00064-7
Frankel, K. L., & Dolan, J. F., 2007. Characterizing arid region alluvial fan surface roughness with airborne laser swath mapping digital topographic data. Journal of Geophysical Research: Earth Surface, 112(F2).  https://doi.org/10.1029/2006JF000644
Gee, G.W., and Or, D., 2002. Particle-Size Analysis. In: Warren, A.D. (ed) Methods of Soil Analysis. Part 4. Physical Methods. Soil Science Society of America Inc, pp 255-295. https://www.wiley.com/en-ai/Methods of Soil Analysis, Part 4: Physical Methods pp9780891188933
Glenn, N. F., Streutker, D. R., Chadwick, D. J., Thackray, G. D., & Dorsch, S. J., 2006. Analysis of LiDAR-derived topographic information for characterizing and differentiating landslide morphology and activity. Geomorphology, 73(1-2), 131-148. https:// doi.org/ 10.1016/ j.geomorph.2005.07.006
Kemper, W.D., & Y Rosenau, R.C., 1986. Aggregate stability and size distribution. In: Kute A, editor. Method of soil analysis, Part-1. Physical and mineralogical methods. Madison (WI): Soil Science Society of America, pp. 425-442.  https://doi.org /10.2136/sssabookser5.4.c14
Melton, M.A. 1965. The geomorphic and paleoclimatic significance of alluvial deposits in southern Arizona. Journal Geology, 73, 1–38. https://www.jstor.org/stable/30066379
Nadeu, E., Gobin, A., Fiener, P., Van Wesemael, B., & Van Oost, K., 2015. Modelling the impact of agricultural management on soil carbon stocks at the regional scale: the role of lateral fluxes. Global change biology, 21(8), 3181-3192.  https://doi.org /10.1111/gcb.12889
Ponti, D.J. 1985. The Quaternary alluvial sequence of the Antelope Valley, California. Geological Society America Special Paper, 203, 79–96. https:// pubs.geoscienceworld. org/  gsa/books/book/339/chapter-pdf/965614/spe203-0079.pdf
Rabbi, S. F., Wilson, B. R., Lockwood, P. V., Daniel, H., & Young, I. M., 2014. Soil organic carbon mineralization rates in aggregates under contrasting land uses. Geoderma, 216, 10-18. https://doi.org/10.1016/j.geoderma.2013.10.023
Regmi, N. R., & Rasmussen, C., 2018. Predictive mapping of soil-landscape relationships in the arid Southwest United States. Catena, 165, 473-486. https:// doi.org/ 10.1016/ j.catena. 2018.02.031
Smith, S. V., Renwick, W. H., Buddemeier, R. W., & Crossland, C. J., 2001. Budgets of soil erosion and deposition for sediments and sedimentary organic carbon across the conterminous United States. Global Biogeochemical Cycles, 15(3), 697-707. https://doi.org /10.1029/2000GB001341
Staley, D. M., Wasklewicz, T. A., & Blaszczynski, J. S., 2006. Surficial patterns of debris flow deposition on alluvial fans in Death Valley, CA using airborne laser swath mapping data. Geomorphology, 74(1-4), 152-163.https://doi.org/10.1016/j.geomorph.2005.07.014
Thomas GW., 1996. Soil pH and soil acidity. In: Sparks DL, editor. Methods of soil analysis. Part 3. Chemical methods. Madison (WI): SSSA; p. 475–490. https://doi.org /10.2136/ sssabookser5.3.c16
Van Hemelryck, H., Fiener, P., Van Oost, K., Govers, G., & Merckx, R., 2010. The effect of soil redistribution on soil organic carbon: an experimental study. Biogeosciences, 7(12), 3971-3986. https://bg.copernicus.org/articles/7/3971/2010/
Vance, E. D., Brookes, P. C., & Jenkinson, D. S., 1987. An extraction method for measuring soil microbial biomass C. Soil biology and Biochemistry, 19(6), 703-707. https:// doi.org/ 10.1016/ 0038-0717(87)90052-6
Xiao, H., Li, Z., Chang, X., Huang, B., Nie, X., Liu, C., ... & Jiang, J., 2018. The mineralization and sequestration of organic carbon in relation to agricultural soil erosion. Geoderma, 329, 73-81. https://doi.org/10.1016/j.geoderma.2018.05.018
 
 
 
 
 
 
 
 
CAPTCHA Image