Alava. J. J., & Singh. G. G. (2022). Changing air pollution and CO2 emissions during the COVID-19 pandemic: Lesson learned and future equity concerns of post-COVID recovery.
Environmental Science & Policy, 130, 1-8.
https://doi.org/10.1016/j.envsci.2022.01.006
Bellaachia, A., & Guven, E. (2006). Predicting Breast Cancer Survivability Using Data Mining Techniques. Age, 58(13), 10-1103.
Berry, M. J. A., & Linoff, G. (2000). Mastering Data Mining: The Art and Science of Customer Relationship Management. New York: John Wiley & Sons Inc.
Berson, A., & Thearling, K. (1999). Building data mining applications for CRM. New York: McGraw-Hill, Inc.
González-Pardo, J., Ceballos-Santos, S., Manzanas, R., Santibáñez, M., & Fernández-Olmo, I. (2022). Estimating changes in air pollutant levels due to COVID-19 lockdown measures based on a business-as-usual prediction scenario using data mining models: A case-study for urban traffic sites in Spain.
Science of the Total Environment,
823, 153786.
https://doi.org/10.1016/j.scitotenv.2022.153786
Gualtieri, G., Brilli, L., Carotenuto, F., Vagnoli, C., Zaldei, A., & Gioli, B. (2020). Quantifying road traffic impact on air quality in urban areas: a COVID19-induced lockdown analysis in Italy.
Environmentall Pollution, 267, 115682.
https://doi.org/10.1016/j.envpol.2020.115682
Hay, N., Onwuzurike, O., Roy, S. P., McNamara, P., McNamara, M. L., & McDonald, W. (2023). Impact of traffic on air pollution in a mid-sized urban city during COVID-19 lockdowns.
Air Quality, Atmosphere & Health,
16(6), 1141-1152.
https://doi.org/10.1016/j.envpol.2020.115682
Haykin, S. (1998).
Neural networks: a comprehensive foundation.
New Jersey: Prentice Hall PTR.
Ho, S. L., Yang, S., Ni, G., Lo, E. W., & Wong, H. C. C. (2005). A particle swarm optimization-based method for multiobjective design optimizations.
IEEE transactions on magnetics,
41(5), 1756-1759.
https://doi.org/10.1109/TMAG.2005.846033
Hsu, C. W. (2003). A Practical Guide to Support Vector Classification. Department of Computer Science, National Taiwan University.
Huangfu, P., & Atkinson, R. (2020). Long-term exposure to NO2 and O3 and all-cause and respiratory mortality: A systematic review and meta-analysis.
Environment international,
144, 105998.
https://doi.org/10.1016/j.envint.2020.105998
Hudda, N., Simon, M. C., Patton, A. P., & Durant, J. L. (2020). Reductions in traffic-related black carbon and ultrafine particle number concentrations in an urban neighborhood during the COVID-19 pandemic.
Science of the Total Environment,
742, 140931.
https://doi.org/10.1016/j.scitotenv.2020.140931
Jia, C., Fu, X., Bartelli, D., & Smith, L. (2020). Insignificant impact of the “Stay-At-Home” order on ambient air quality in the Memphis metropolitan area, USA.
Atmosphere,
11(6), 630.
https://doi.org/10.3390/atmos11060630
Kantardzic, M. (2003). Data Mining: Concepts, models, methods, and algorithms. Technometrics, 45(3), 277.
Larose, D. T. (2005). Discovering knowledge in data: an introduction to data mining. New York: John Wiley & Sons Inc.
Lee, D., Robertson, C., McRae, C., & Baker, J. (2022). Quantifying the impact of air pollution on Covid-19 hospitalisation and death rates in Scotland.
Spatial and Spatio-temporal Epidemiology,
42, 100523.
https://doi.org/10.1016/j.sste.2022.100523
Lin, G. Y., Chen, W. Y., Chieh, S. H., & Yang, Y. T. (2022). Chang impact analysis of level 3 COVID-19 alert on air pollution indicators using artificial neural network.
Ecological Informatics,
69, 101674.
https://doi.org/10.1016/j.ecoinf.2022.101674
Liu, J., Lipsitt, J., Jerrett, M., & Zhu, Y. (2020). Decreases in near-road NO and NO2 concentrations during the COVID-19 pandemic in California.
Environmental Science & Technology Letters,
8(2), 161-167.
https://doi.org/10.1021/acs.estlett.0c00815
Lv, Y., Tian, H., Luo, L., Liu, S., Bai, X., Zhao, H., ... & Yang, J. (2022). Meteorology-normalized variations of air quality during the COVID-19 lockdown in three Chinese megacities.
Atmospheric Pollution Research,
13(6), 101452.
https://doi.org/10.1016/j.apr.2022.101452
Munnoli, P. M., Nabapure, S., & Yeshavanth, G. (2020). Post-COVID-19 precautions based on lessons learned from past pandemics: a review.
Journal of Public Health, 1–9.
https://doi.org/10.1007/s10389-020-01371-3
Patan, K. (2019). Neural Networks. Pp. 9-58. In: Patan, K. (eds). Neural Networks Robust and Fault-Tolerant Control Neural-Network-Based Solutions. Springer- Cham, Switzerland.
Paul, A., Mukherjee, D. P., Das, P., Gangopadhyay, A., Chintha, A. R., & Kundu, S. (2018). Improved random forest for classification.
IEEE Transactions on Image Processing,
27(8), 4012-4024.
https://doi.org/10.1109/TIP.2018.2834830
Saharan, U. S., Kumar, R., Tripathy, P., Sateesh, M., Garg, J., Sharma, S. K., & Mandal, T. K. (2022). Drivers of air pollution variability during second wave of COVID-19 in Delhi, India.
Urban Climate,
41, 101059.
https://doi.org/10.1016/j.uclim.2021.101059
Sanchez-Lorenzo, A., Vaquero-Martínez, J., Calbó, J., Wild, M., Santurtún, A., Lopez-Bustins, J. A., ... & Antón, M. (2021). Did anomalous atmospheric circulation favor the spread of COVID-19 in Europe?.
Environmental research,
194, 110626.
https://doi.org/10.1016/j.envres.2020.110626
Shangguan, Z., Wang, M. Y., & Sun, W. (2020). What caused the outbreak of COVID-19 in China: From the perspective of crisis management.
International journal of environmental research and public health,
17(9), 3279.
https://doi.org/10.3390/ijerph17093279
Ticehurst, J. L., Letcher, R. A., & Rissik, D. (2008). Integration modelling and decision support: A case study of the Coastal Lake Assessment and Management (CLAM) Tool.
Mathematics and Computers in Simulation,
78(2-3), 435-449.
https://doi.org/10.1016/j.matcom.2008.01.024
Uday, U., Bethineedi, L. D., Hasanain, M., Ghazi, B. K., Nadeem, A., Patel, P., & Khalid, Z. (2022). Effect of COVID-19 on air pollution related illnesses in India.
Annals of medicine and surgery,
78, 103871.
https://doi.org/10.1016/j.amsu.2022.103871
Wang, S., Ma, Y., Wang, Z., Wang, L., Chi, X., Ding, A., ... & Zhang, Y. (2021). Mobile monitoring of urban air quality at high spatial resolution by low-cost sensors: impacts of COVID-19 pandemic lockdown.
Atmospheric Chemistry and Physics,
21(9), 7199-7215.
https://doi.org/10.5194/acp-21-7199-2021
Wen, C., Akram, R., Irfan, M., Iqbal, W., Dagar, V., Acevedo-Duqued, Á., & Saydaliev, H. B. (2022). The asymmetric nexus between air pollution and COVID-19: evidence from a non-linear panel autoregressive distributed lag model.
Environmental research,
209, 112848.
https://doi.org/10.1016/j.envres.2022.112848
Wijnands, J. S., Nice, K. A., Seneviratne, S., Thompson, J., & Stevenson, M. (2022). The impact of the COVID-19 pandemic on air pollution: A global assessment using machine learning techniques.
Atmospheric Pollution Research,
13(6), 101438.
https://doi.org/10.1016/j.apr.2022.101438
Xiang, J., Austin, E., Gould, T., Larson, T., Shirai, J., Liu, Y., ... & Seto, E. (2020). Impacts of the COVID-19 responses on traffic-related air pollution in a Northwestern US city.
Science of the Total Environment,
747, 141325.
https://doi.org/10.1016/j.scitotenv.2020.141325
Zeng, J., & Wang, C. (2022). Temporal characteristics and spatial heterogeneity of air quality changes due to the COVID-19 lockdown in China.
Resources, Conservation and Recycling,
181, 106223.
https://doi.org/10.1016/j.resconrec.2022.106223
Send comment about this article