Ahmadzadeh, H., Saeedabadi, R., & Nouri, E. (2015). A Study and Zoning of the Areas Prone to Flooding with an Emphasis on Urban Floods (Case Study: City of Maku).
Hydrogeomorphology,
2(2), 1-24. [In Persian]
https://dorl.net/dor/20.1001.1.23833254.1394.2.2.1.0
Ainlou, F. (2014). The effect of land use change and urban development on runoff production (case study: Zanjan city). Master's thesis, Faculty of Natural Resources, University of Tehran. [In Persian]
Alizadeh, A. (2015). Principles of Applied Hydrology (40th ed.). Mashhad: Imam Reza University Press. [In Persian]
Arabi, M., Govindaraju, R. S., & Hantush, M. M. (2002). A probabilistic approach for analysis of uncertainty in the evaluation of watershed management practice.
Journal of Hydrology,
333, 459–471. [In Persian]
https://doi.org/10.1016/j.jhydrol.2006.09.012
Arman, N., Shahbazi, A., Faraji, M., & Dehdari, S. (2019). Effect of urban development on runoff generation by SWMM, case study: Khuzestan Province, Izeh,
Watershed Engineering and Management, 11(3), 750-758. [In Persian]
https://doi.org/10.22092/ijwmse.2018.115272.1353
Dongquan, Z., Jining, C., Haozheng, W., Qingyuan, T., Shangbing, C., & Zheng, S. (2009). GIS-based urban rainfall-runoff modeling using an automatic catchment-discretization approach: a case study in Macau.
Environmental Earth Sciences,
59, 465-472.
https://doi.org/10.1007/s12665-009-0045-1
Fallah Zawareh, F., Kamali, B., & Mirzaei, M. (2013). Investigating the influence of rainfall time pattern in SWMM and HEC-HMS models. In
Proceedings of the 6th National Congress On Civil Engineering, Semnan University, Semnan. [In Persian]
https://civilica.com/doc/120602/
Hejazizadeh, Z., Khosravi, F., & Naserzadeh, M. H. (2011). Crisis management in the new city of Baharestan by using geographic information system, relying on flood and determining suitable urban drainage routes for disposal of surface water.
Applied Researches in Geographical Sciences, 11(20), 31-50. [In Persian]
http://jgs.khu.ac.ir/article-1-594-fa.html
Huber, W. C., & Dickinson, R. E. (1992). Storm water management model user’s manual. Georgia: Environmental Protection Agency.
Jinkang, D., Shunping, X., Youpeng, X., Xu, C. Y., & Singh, V. P. (2007(. Development and testing of a simple physically-based distributed rainfall-runoff model for storm runoff simulation in humid forested basins.
Journal of Hydrology, 336(3-4), 334–346.
https://doi.org/10.1016/j.jhydrol.2007.01.015
Khorsandi Kouhanestani, Z., & Zolfaghary, M. (2016). An Investigation of the Effect of Pervious Surfaces Distribution on Flood Hydrograph Peak in Urban Regions.
International Bulletin of Water Resources and Development, 4(1), 237-245. [In Persian]
https://www.magiran.com/p1549663
Lin, S. S., Hsieh, S. H., Kuo, J. T., Liao, Y. P., & Chen, Y. C. (2006). Integrating legacy components into a software system for storm sewer simulation.
Environmental Modelling & Software,
21(8), 1129-1140.
https://doi.org/10.1016/j.envsoft.2005.05.012
Ogden, F. L., Pradhan, N. R., Downer, C. W., & Zahner, J. A. (2011). Relative importance of impervious area, drainage density, width function, and subsurface storm drainage on flood runoff from an urbanized catchment.
Water Resource Research, 47(12).
https://doi.org/10.1029/2011WR010550
Phillips, B. C., Yu, S., Thompson, G. R., & De Silva, N. (2005). 1D and 2D modelling of urban drainage systems using XP-SWMM and TUFLOW. In 10th International Conference on Urban Drainage, Copenhagen, Denmark, 21-26.
Santhi, C., Arnold, J. G., Williams, J. R., Dugas, W. A., Srinivasan, R., & Hauck, L. M. (2001). Validation of the SWAT model on a large river basin with point and nonpoint sources.
JAWRA Journal of the American Water Resources Association,
37(5), 1169-1188.
https://doi.org/10.1111/j.1752-1688.2001.tb03630.x
Shahbazi, A., Khaliqi Sygarodi, S., Malekian, A., & Salajegheh, A. (2014). Selection of the best empirical formula to estimate time of concentration in urban watersheds (Case study: Mahdasht town).
Journal of Range and Watershed Managment,
67(3), 419-435. [In Persian]
https://doi.org/10.22059/jrwm.2014.52835
Soleimani, M., Behzadian, K., & Ardeshir, A. (2016). Evaluatiopn of Strategies for Modifying Urban Storm Water Drainage System Using Risk-based Criteria.
Journal of Water and Wastewater,
26(6), 16-29. [In Persian]
https://www.wwjournal.ir/article_11135.html
Sourisseau, S., Bassères, A., Périé, F., & Caquet, T. (2008). Calibration, validation and sensitivity analysis of an ecosystem model applied to artificial streams.
Water research,
42(4-5), 1167-1181.
https://doi.org/10.1016/j.watres.2007.08.039
Temprano, J., Arango, O., Cagiao, J., Suarez, J., & Tejero, I. (2006). Storm water quality calibration by SWMM: a case study in Northern Spain.
Water SA, 32(1), 55–63.
https://doi.org/10.4314/wsa.v32i1.5240
Yarahmadi, Y., Yousefi, H., Jahangir, M. H., & Sadatineghad, S. J. (2019). Evaluation of the network performance of surface water collection and guidance using the SWMM Hydrological Model (Case Study: District 6 of Tehran Municipality).
Iranian journal of Ecohydrology,
6(2), 415-429. [In Persian]
https://doi.org/10.22059/ije.2019.277930.1071
Zoppou, C. (2001). Review of urban storm water models. Environmental Modelling & Software, 16(3), 195
Send comment about this article