Estimation of Dinevar River flood risk using Australian standard method

Document Type : Research Article

Authors

1 Ph.D in Geomorphology, Faculty of Earth Sciences, Shahid Beheshti University, Tehran,Iran

2 Associate Professor, Faculty of Earth Sciences, Shahid Beheshti University, Tehran, Iran

10.22067/geoeh.2023.83238.1390

Abstract

Floods are among the greatest threats to social security and the sustainable development of society. They can cause widespread devastation, resulting in loss of life and significant damage to personal property and critical public infrastructure. The purpose of this research is to zone and estimate the flood risk of the Dinevar River using the Australian Standard Method.
Flood simulation was conducted using the HEC-RAS (version 6.1) one-dimensional hydrodynamic model. Geometric data were processed in GIS using the HEC-GeoRAS extension. The peak discharge for different return periods was calculated using HyfranPlus software and the Gamma distribution. After modeling and extracting flow parameters (velocity and depth), flood risk zoning was performed based on the Australian Standard Method, which uses the product of two parameters: depth and flow velocity (D*V).
According to the river's morphology, it was divided into three sections. The results of the model indicate that in the first section, the flood zone did not expand significantly. However, in the second and third sections, the flood covered extensive rural areas and agricultural lands during the return periods of 25, 50, and 100 years. The majority of the region falls within the H3 and H4 risk zones, highlighting the urgent need to prioritize flood management and risk reduction strategies in future planning efforts.

Keywords

Main Subjects


Avand, M., Kuriqi, A., Khazaei, M., & Ghorbanzadeh, O. (2022). DEM resolution effects on machine learning performance for flood probability mapping. Journal of Hydro-Environment Research40, 1-16. https://doi.org/10.1016/j.jher.2021.10.002 
Bait Elahpour, I., Shaibani, H., & Alizadeh, H. (2017). Feasibility of using satellite images in determining river bed limit, case study: Gabrik River. In the eleventh International River Engineering Conference. ]In Persian[ https://civilica.com/doc/898311/
Baky, M. A. A., Islam, M., & Paul, S. (2020). Flood hazard, vulnerability and risk assessment for different land use classes using a flow model. Earth Systems and Environment4, 225-244. https://doi.org/10.1007/s41748-019-00141-w
Bazrafshan, O., Shekari, M., Zamani, H., Dehghanpir, S., & Singh, V. P. (2021). Assessing hydrologic drought risk using multi-dimensional copulas: case study in Karkheh River basin. Environmental Earth Sciences80, 538. https://doi.org/10.1007/s12665-021-09870-6
Bozorgmehr, S. (2019). Iran says recent floods caused up to $2.5 billion in damage. https://www.reuters.com/article/us-iran-floods-idUSKCN1RQ093
Brunner, G. W. (2002). HEC-RAS river analysis system: User's manual. US Army Corps of Engineers, Institute for Water Resources. Hydrologic Engineering Center. https://www.worldcat.org/title/hec-ras-river-analysis-system-users-manual/oclc/646863632&referer=brief_results
Burge, L. (2007). Geomorphology and river management: applications of the river styles framework. The Canadian Geographer51(1), 109-111. https://doi.org/10.1111/j.1541-0064.2007.00168_1.x
Coon, W. F. (1995). Estimates of roughness coefficients for selected natural stream channels with vegetated banks in New York (No. 93-161). US Geological Survey; Earth Science Information Center, Open-File Reports Section.
Echogdali, F. Z., Boutaleb, S., Kpan, R. B., Ouchchen, M., Id-Belqas, M., Dadi, B., ... & Abioui, M. (2022). Flood hazard and susceptibility assessment in a semi-arid environment: A case study of Seyad basin, south of Morocco. Journal of African Earth Sciences196, 104709. https://doi.org/10.1016/j.jafrearsci.2022.104709
Fang, L., Huang, J., Cai, J., & Nitivattananon, V. (2022). Hybrid approach for flood susceptibility assessment in a flood-prone mountainous catchment in China. Journal of Hydrology612, 128091. https://doi.org/10.1016/j.jhydrol.2022.128091
Gudiyangada Nachappa, T., Piralilou, S. T., Gholamnia, K., Ghorbanzadeh, O., Rahmati, O., & Blaschke, T. (2020). Flood susceptibility mapping with machine learning, multi-criteria decision analysis and ensemble using Dempster Shafer Theory. Journal of Hydrology590, 125275. https://doi.org/10.1016/j.jhydrol.2020.125275
Haji Hosseinlou, H., Aghdam, V., & Valizadeghan, E. (2024). Study of the impact of bridge structures on the river floodplain using Hec-Ras and Arc-GIS software (Case study: Sarnagh Bridge on the Zola River). Journal of Geography and Environmental Hazards13(1),47-62. ]In Persian[ https://doi.org/10.22067/geoeh.2022.75257.1175
Horritt, M. S., & Bates, P. D. (2002). Evaluation of 1D and 2D numerical models for predicting river flood inundation. Journal of Hydrology268(1-4), 87-99. https://doi.org/10.1016/S0022-1694(02)00121-X
Hosseinzadeh, M. M. & Esmaeli, R. (2015). Fluvial geomorphology concepts, froms and processes. Tehran: Shahid Beheshti University. ]In Persian ] https://press.sbu.ac.ir/book_241.html 
Jibhakate, S. M., Timbadiya, P. V., & Patel, P. L. (2023). Multiparameter flood hazard, socioeconomic vulnerability and flood risk assessment for densely populated coastal city. Journal of Environmental Management344, 118405. https://doi.org/10.1016/j.jenvman.2023.118405
Lyu, H. M., Shen, S. L., Zhou, A., & Yang, J. (2019). Perspectives for flood risk assessment and management for mega-city metro system. Tunnelling and Underground Space Technology84, 31-44. https://doi.org/10.1016/j.tust.2018.10.019
Mani, P., Chatterjee, C., & Kumar, R. (2014). Flood hazard assessment with multiparameter approach derived from coupled 1D and 2D hydrodynamic flow model. Natural Hazards70, 1553-1574. https://doi.org/10.1007/s11069-013-0891-8
Masih, I., Uhlenbrook, S., Maskey, S., & Smakhtin, V. (2011). Streamflow trends and climate linkages in the Zagros Mountains, Iran. Climatic Change104(2), 317-338. https://doi.org/10.1007/s10584-009-9793-x
Mehta, D. J., Eslamian, S., & Prajapati, K. (2022). Flood modelling for a data-scare semi-arid region using 1-D hydrodynamic model: a case study of Navsari Region. Modeling Earth Systems and Environment8, 2675-2685. https://doi.org/10.1007/s40808-021-01259-5
Mejia-Navarro, M., Wohl, E. E., & Oaks, S. D. (1994). Geological hazards, vulnerability, and risk assessment using GIS: model for Glenwood Springs, Colorado, In M. Morisawa (ed.), Geomorphology and Natural Hazards, 331–354. https://doi.org/10.1016/B978-0-444-82012-9.50025-6
Ministry of Energy. (2020). Manual for providing flood risk map. No.821. Islamic Republic of Iran: Plan and Budget Organization. ]In Persian] https://waterstandard.wrm.ir/cs/WRMResearch/278/396
Modarres, R., Sarhadi, A., & Burn, D. H. (2016). Changes of extreme drought and flood events in Iran. Global and Planetary Change144, 67-81. https://doi.org/10.1016/j.gloplacha.2016.07.008
Mohanty, M. P., Nithya, S., Nair, A. S., Indu, J., Ghosh, S., Bhatt, C. M., ... & Karmakar, S. (2020). Sensitivity of various topographic data in flood management: Implications on inundation mapping over large data-scarce regions. Journal of Hydrology590, 125523. https://doi.org/10.1016/j.jhydrol.2020.125523
Mondal, I., Bandyopadhyay, J., & Paul, A. K. (2016). Estimation of hydrodynamic pattern change of Ichamati River using HEC RAS model, West Bengal, India. Modeling Earth Systems and Environment2, 1-13. https://doi.org/10.1007/s40808-016-0138-2
Nayyeri, H., Kahrizi, S., & Sanikhani, H. (2022). Analysis of the relationship between fractals and the dynamics governing watersheds,(case study Dinvar river basin in Kermanshah province, Iran). Environmental Earth Sciences81(21), 515. https://doi.org/10.1007/s12665-022-10641-0
Parizi, E., Khojeh, S., Hosseini, S. M., & Moghadam, Y. J. (2022). Application of Unmanned Aerial Vehicle DEM in flood modeling and comparison with global DEMs: Case study of Atrak River Basin, Iran. Journal of Environmental Management317, 115492. https://doi.org/10.1016/j.jenvman.2022.115492
Pathan, A. I., & Agnihotri, P. G. (2021). Application of new HEC-RAS version 5 for 1D hydrodynamic flood modeling with special reference through geospatial techniques: a case of River Purna at Navsari, Gujarat, India. Modeling Earth Systems and Environment7, 1133-1144. https://doi.org/10.1007/s40808-020-00961-0
Salman, A., Hassan, S. S., Khan, G. D., Goheer, M. A., Khan, A. A., & Sheraz, K. (2021). HEC-RAS and GIS-based flood plain mapping: A case study of Narai Drain Peshawar. Acta Geophysica69, 1383-1393. https://doi.org/10.1007/s11600-021-00615-4
Schumann, A. H., Funke, R., & Schultz, G. A. (2000). Application of a geographic information system for conceptual rainfall–runoff modeling. Journal of Hydrology240(1-2), 45-61. https://doi.org/10.1016/S0022-1694(00)00312-7
Sharifi, F., Samadi, S. Z., & Wilson, C. A. (2012). Causes and consequences of recent floods in the Golestan catchments and Caspian Sea regions of Iran. Natural Hazards61, 533-550. https://doi.org/10.1007/s11069-011-9934-1
Shokri, A., Sabzevari, S., & Hashemi, S. A. (2020). Impacts of flood on health of Iranian population: Infectious diseases with an emphasis on parasitic infections. Parasite Epidemiology and Control9, e00144. https://doi.org/10.1016/j.parepi.2020.e00144
Thapa, S., Shrestha, A., Lamichhane, S., Adhikari, R., & Gautam, D. (2020). Catchment-scale flood hazard mapping and flood vulnerability analysis of residential buildings: The case of Khando River in eastern Nepal. Journal of Hydrology: Regional Studies30, 100704. https://doi.org/10.1016/j.ejrh.2020.100704
Yari, A., Ardalan, A., Ostadtaghizadeh, A., Zarezadeh, Y., Boubakran, M. S., Bidarpoor, F., & Rahimiforoushani, A. (2019). Underlying factors affecting death due to flood in Iran: A qualitative content analysis. International Journal of Disaster Risk Reduction40, 101258. https://doi.org/10.1016/j.ijdrr.2019.101258
Yerramilli, S. (2012). A hybrid approach of integrating HEC-RAS and GIS towards the identification and assessment of flood risk vulnerability in the city of Jackson, MS. American Journal of Geographic Information System1(1), 7-16. https://doi:10.5923/j.ajgis.20120101.02
 
CAPTCHA Image