Predicting Changes in Stream Path and Morphology of Gorganrood River with an Emphasis on Flooding

Document Type : Research Article

Authors

1 Assistant Professor,Department of Geology, Islamic Azad University, Bandar Abbas Branch, Bandar Abbas, Iran

2 Soil Conservation and Watershed Management Research Institute, Tehran, Iran

3 Golestan Agricultural and Natural Resources Research and Education Center, AREEO, Gorgan, Iran

Abstract

In recent years, the occurrence of several destructive floods in the southeastern plain of the Caspian Sea, caused by the flood of the Gorganrood River, has caused many casualties and damage. Predicting the future morphological conditions of the river and its surroundings is one of the essential factors in planning and arranging the coastal plains. Landsat 5, 7, and 8 satellite images of 1987, 2002, and 2018, with field studies, software studies, and CA Markov automated cells model were used in this research. The accuracy of the modeling was confirmed using random ground control points. Moreover, the reaction of the river canal at the flood events was examined based on the satellite image of April 3, 2019. The results showed that the most probable changes in the study area are in river, plains, and man-made facilities units around Voshmgir Dam Lake. Also, the very low hydraulic slope of Gorganrood in the downstream areas of Voshmigir Dam prevents the rapid evacuation of floods and creates a reverse flow and flooding of the surrounding lands. This phenomenon causes the Gorganrood flood and Qarasoo tributaries to interfere in the area between Salagh-Yelghi and Aq Qala. Therefore, increasing the height level of the river shores between the tributaries of Gorganrood and Qarasoo can prevent the flow of interference in them and reduce the risk of flooding of the Qarasoo around lands. Due to water flooding and flood transmission through abandoned canals of Gorganrood in the northern lands of Aq Qala to Siminshahr, the construction of an emergency flood drainage canal through abandoned canals can be a permanent solution to control floods in these areas.

Graphical Abstract

Predicting Changes in Stream Path and Morphology of Gorganrood River with an Emphasis on Flooding

Keywords


بیت الهی، علی؛ 1398. گزارش سیل گلستان، 28-12-1397. مرکز تحقیقات راه، مسکن و شهرسازی. ص 42. http://sapla.ir/Pdfs/HazardReportsPdfs/
قاسمی، محمدرضا؛ محمدخانی، حسین؛ یدالهی، عطا؛ 1386. چینه‌شناسی و زمین‌شناسی کواترنری دشت هیرکان (دشت گرگان). بیست و ششمین گردهمایی علوم زمین. تهران. https://civilica.com/doc/40131
کاردان، نازیلا؛ حسن‌زاده، یوسف؛ ارزنلو، ابوالفضل؛ 1396. شبیه‌سازی دوبعدی جریان‌های سیلابی شهری با مدل (CCHE2D) مطالعه موردی: شهر آق‌قلا. دریا فنون. سال چهارم. 25-36.
گنجی، کامران؛ قره چلو، سعید؛ احمدی، احمد؛ 1400. تعیین عوامل مؤثر بر سیل‌خیزی رودخانه گرگانرود و ریز پهنه‌بندی خطر سیلاب شهرستان آق‌قلا با استفاده از تحلیل سلسله مراتبی AHP. جغرافیا و مخاطرات محیطی. شماره 40. DOI: https://dx.doi.org/10.22067/geoeh.2020.67016.0
مزیدی، مریم؛ خوش روش، مجتبی؛ 1395. تأثیر تغییر اقلیم بر فراوانی سیل در حوضه گرگانرود با استفاده از آنالیز مرتبه اول هیدرولوژیک بارش-رواناب. پژوهش‌های کاربردی علوم آب. 2(2) 35-44.
 https://www.virascience.com/paper/
مصفایی، جمال؛ غریب رضا، محمدرضا؛ گرشاسبی، پرویز؛ صالح پور جم، امین؛ 1399. نشریه فنی: گزارش بازدید سیل و آب‌گرفتگی‌های نوروز 1398 استان گلستان. پژوهشکده حفاظت خاک و آبخیزداری. ص 34.
معصومی، حمیدرضا؛ حبیبی، علیرضا، غریب رضا، محمدرضا؛ 1400. پیش‌بینی‌ مورفولوژی‌ رودخانه‌ها‌ و‌ سیلاب‌ منطقه ‌دشتیاری ‌برای 2030. مهندسی و مدیریت آبخیز. جلد 13. شماره 3. 838-849.
معصومی، حمیدرضا؛ حبیبی، علیرضا، قدرتی، علیرضا؛ 1400. مورفولوژی و فرآیندهای مؤثر در تغییرات مسیر جریان رودخانه سفیدرود برای پیش‌بینی افق 2030. جغرافیا و مخاطرات محیطی. دوره 10. شماره1. 81-97.  10.22067/GEOEH.2021.68445.1012
یوسفی، عبدالرضا؛ 1384. فیزیوگرافی حوضه‌های آبخیز استان گلستان. انتشارات امور آب استان گلستان. ص 73.
 
Medel, I. D., Stubblefield, A. P., Sheam C., 2020. Sedimentation and erosion patterns within anabranching channels in a lowland river restoration project. International Journal of River Basin Management, DOI: 10.1080/15715124.2020.1809435
Mirzaeizadeh, V, Niknwzhad, M., Ouladi, J., 2015. Evaluating non-parametric supervised classification algorithms in land cover map using LandSat-8 Images. Journal of RS and GIS for natural resources, Vol. 6, No. 3, 29-44. https:// girs.iaubushehr.ac.ir/ article_516794. html? lang=en
Mondal S, Sharma N, Kappas M, Garg P K., 2020. Cellular automata (CA) contiguity filters impacts on CA Markov modelling of land use land cover change predictions results. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. XLIII, B3, 1585–1591. https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLIII-B3-2020
Morais ES, Rocha P C, and Hooke., J. 2016. Spatiotemporal variations in channel changes caused by cumulative factors in a meandering river: The lower Peixe River, Brazil, Geomorphology, 273:348-360.  10.1016/j.geomorph.2016.07.026
Muller M R., Middleton J., 1994. A Markov model of land-use change dynamics in the Niagara Region, Ontario, and Canada. Landscape Ecology, 9, 151-157. https:// link.springer.com/ article/10.1007/BF00124382
Pal M, Mather P M., 2005. Support vector machines for classification in remote sensing. International Journal of Remote Sensing, 26 (5), 1007-1011. doi.org/ 10.1080/ 014311605 12331314083
Sang L, Zhang C, Yang J, Zhu D, Yun W., 2011. Simulation of land use spatial pattern of towns and villages based on CA–Markov model. Mathematical and Computer Modelling, 10, 883-848. DOI: 2002022/j.mcm.10200220028.
Subedi P, Subedi K, Thapa B., 2013. Application of a Hybrid Cellular Automation Markov (CA-Markov) Model in Land-Use Change Prediction: A Case Study of Saddle Creek Drainage Basin, Florida. Applied Ecology and Environmental Sciences, 16, 126-132. DOI: 10.12691/aees-1-6-5
Zhang F, Tiyip T, Feng ZD, Kung H-T, Johnson V C, Ding JL, Tashpolat N, Sawut M, Gui DW., 2015. Spatio-temporal patterns of land use/cover changes over the past 20 years in the middle reaches of the Tarim River, Xinjiang, China. Land Degradation and Development, 26,284- 29. https:// onlinelibrary.wiley.com/doi/abs/10.1002/ldr.2206
CAPTCHA Image