Capacity Assessment of the Vulnerability of Settlements in the Tahlab Watershed of Sistan and Baluchistan Through Accidental Floods

Document Type : Research Article

Authors

1 Associate Professor, Faculty of Urban Engineering, Bojnord University, Bojnord, Iran

2 MSc in Natural Environmental Hazards, Faculty of Geographical Sciences, Sistan and Baluchestan University, Zahedan, Iran

3 Regional Planning Student, Faculty of Geography and Environmental Planning, Shahid Beheshti University, Tehran, Iran

Abstract

Flood is one of the destructive natural phenomena that has greatly affected human activities and human settlements. The current research was carried out with the aim of identifying settlements susceptible to accidental floods in the dry catchment area of ​​Tahlab in Sistan and Baluchistan Province. The research method is descriptive-analytical and practical in terms of purpose. Twelve indicators of the capacity to measure the risk of settlements are: road, settlement, soil, slope, height, precipitation, vegetation, geology, land use, main waterway, secondary waterway and drainage density of the collective basin. were brought. In the following, they were modified using the opinion of experts and were analyzed in 3 stages. In the first step, the importance of the data was evaluated using the ANP method in the Super Decision v2 software environment from 1 to 9. In the second step, in the Arc GIS 10.7 environment and based on the level of importance, each layer was classified into 4 high-risk, low-risk, medium-risk and no-risk classes. In the third step, using the weighted overlay tool, the flood risk zoning map of the Tahlab catchment area was prepared. The results showed that among the above 12 layers, the main waterway, slope, land use and precipitation would play the most important role in determining the flood risk potential of the research area. According to the findings of the research in risky areas, 24 settlements out of a total of 68 settlements are located in the range of high-risk potential to very high flood risk. Thus, It is necessary to use structural methods (water retention time program) and non-structural methods (warning system based on flood prediction models) in order to reduce the risk of flooding in these settlements.

Graphical Abstract

Capacity Assessment of the Vulnerability of Settlements in the Tahlab Watershed of Sistan and Baluchistan Through Accidental Floods

Keywords


جانانه، کریستینه؛ 1392. پهنه بندی پتانسیل سیل خیزی در حوضه آبریز کبوتر علی چای با استفاده از مدلSGS. پایان نامه کارشناسی ارشد. رشتۀ جغرافیای طبیعی. دانشکده جغرافیا. دانشگاه تبریز. گرایش ژئومورفولوژی در برنامه ریزی محیطی.
حسن­زاده نفوتی، محمد؛ خواجه بافقی، حبیب ا...؛ 1395. پهنه­بندی خطر سیلاب با استفاده از سیستم  تصمیم­گیری چندمعیاره (مطالعه موردی: حوزه آبخیز شیطور بافق). پژوهشنامه مدیریت حوزه آبخیز. سال هفتم. شماره 14. 37-29.                                                                            https://doi.org/10.29252/jwmr.7.14.37
حسن­نژاد خیارک، ملاحت؛ 1396. بررسی پتانسیل سیل­خیزی حوضۀ شهری اردبیل با استفاده از مدل الکتره. پایان­نامه کارشناسی­ارشد رشتۀ مخاطرات محیطی. دانشکدۀ علوم انسانی و علوم اجتماعی. دانشگاه مازندارن. 1-92.
خسروشاهی، محمد؛ ابطحی، مرتضی؛ کاشکی، محمدتقی؛ لطفی­نسب، سکینه؛ درگاهیان، فاطمه؛ ابراهیمی­خوسفی، زهره؛ 1396. تعیین قلمرو بیابان­های ایران از جنبه عوامل محیط طبیعی. نشریۀ علمی تحقیقات مرتع و بیابان ایران. دوره 24. شماره 2. 417-404.                                           https://doi.org/10.22092/ijrdr.2017.111904
سازمان آب منطقه­ای استان سیستان و بلوچستان. 1400.
سازمان هواشناسی استان سیستان­ و بلوچستان. 1400.
شعبانلو، سعید؛ صدقی، حسین؛ ثقفیان، بهرام؛ 1387. پهنه­بندی سیلاب در شبکه رودخانه­های استان گلستان با استفاده از GIS. مجلۀ پژوهش آب ایران. سال دوم. شماره 3. 22-11.           http://iwrj.sku.ac.ir/article_10784.html
قلی­زاده، آیلا؛ قنواتی، عزت­الله؛ افشارمنش، حمیده؛ امان­اله­پور، حجت؛ 1396. کارایی مدل فازی در پتانسیل سیل­خیزی حوضه زنگمار. فضای جغرافیایی. سال هفدهم. شماره 60. 245-227.
مصطفی زاده، رئوف؛ صفریان زنگیر، وحید؛ حاجی، خدیجه؛ 1397. تحلیل الگو و شرایط وقوع بارش­های منجر به سیل در سال­های 1383 تا 1393 در شهرستان گرمی استان اردبیل. مجله مخاطرات محیط طبیعی. دوره7. شماره15. صص89-106.                                                                  https://doi.org/10.22111/jneh.2017.3205
مقصودی، مهران؛ جوان، حسین؛ رحیمی، مجتبی؛ عظیمی­راد، صمد؛ 1392. تعیین مناطق مستعد سیل با استفاده از پتانسیل­سنجی عوامل مؤثر (مطالعه موردی: رود شاهرود). پژوهش­های ژئومورفولوژی کمّی. سال دوم. شماره 2. 186-175.                                        http://www.geomorphologyjournal.ir/article_77915.html
ملازهی، اسدالله؛ پودینه، محمدرضا؛ خسروی، محمود؛ آرمش، محسن؛ دهواری، علی­اصغر؛ 1399. پتانسیل­سنجی خطر سیلاب در حوضه آبریز سرباز. نشریه تحقیقات کاربردی علوم جغرافیایی. شماره 58. 260-242.
میرزایی، شهناز؛ اسمعلی، اباذر؛ مصطفی زاده، رئوف؛ قربانی، اردوان؛ میرزایی، سجاد؛ 1397. شبیه سازی هیدروگراف سیل و تحلیل ارتباط آن با سنجه­های سیمای سرزمین در حوضه آبخیز عموقین استان اردبیل. مجله اکوهیدرولوژی. دوره5. شماره2. صص357-372.                               https://doi.org/10.22059/ije.2018.231141.547  
نوحه­گر، احمد؛ کاظمی، محمد؛ قصردشتی­روشن، محمد؛ رضائی، پیمان؛ 1391. بررسی تأثیر تغییر کاربری اراضی بر پتانسیل سیل­خیزی (مطالعه موردی حوزه آبخیز تنگ بستانک شیراز). پژوهش­های فرسایش محیطی. شماره 2. 41-28.                                                 http://magazine.hormozgan.ac.ir/article-1-85-fa.html.
 
Arabameri, A., Rezaei, K., Cerd`a, A., Conoscenti, C., Kalantari, Z., 2019. A comparison of statistical methods and multi-criteria decision making to map flood hazard susceptibility in Northern Iran. Sci. Total Environ. 660, 443–458. https:// doi.org/ 10.1016/ j. scitotenv. 2019. 01.021.
Arya, A. K., & Singh, A. P., 2021. Multi criteria analysis for flood hazard mapping using GIS techniques: a case study of Ghaghara River basin in Uttar Pradesh, India. Arabian Journal of Geosciences, 14(8), 1–12.
 https:// doi.org/ 10.1007/ s12517-021-06971-1.
Ballesteros-Cánovas JA, Sanchez-Silva M, Bodoque JM, Díez-HerreroA., 2013. An integrated approach to flood risk management: a case study of Navaluenga (Central Spain). Water Resour Manage 27(8):3051–3069. https://doi.org/10.1007/s11269-013-0332-1.
Chen, Y. R., Yeh, C. H., & Yu, B., 2011. Integrated application of the analytic hierarchy process and the geographic information system for flood risk assessment and flood plain management in Taiwan. Natural Hazards, 59(3), 1261-1276. https://doi.org/10.1007/s11069-011-9831-7.
CRED., 2009. Centre for Research on the Epidemiology of Disasters (CRED). EM-DAT: The International Disaster Database. Brussels, Belgium, Université Catholique de Louvain.
Dano, U.L., Balogun, A.-L., Matori, A.-N., Wan Yusouf, K., Abubakar, I.R., Said Mohamed, M.A., Aina, Y.A., Pradhan, B., 2019. Flood susceptibility mapping using GIS-based analytic network process: a case study of Perlis, Malaysia. Water-Sui 11, 615. https:// doi.org/ 10.3390 /w11030615.
Das, S., 2019. Geospatial mapping of flood susceptibility and hydro-geomorphic response to the floods in Ulhas basin, India. Remote Sens. Appl. Soc. Environ. 14, 60–74. https:// doi.org/ 10.1016/ j.rsase.2019.02.006.
Degrossi, L. C., de Albuquerque, J. P., Fava, M. C., & Mendiondo, E. M., 2014. Flood Citizen Observatory: a crowdsourcing-based approach for flood risk management in Brazil. In SEKE (pp. 570-575). https://ksiresearch.org/seke/seke14paper/seke14paper_74.pdf.
Eguaroje, O.E., Alaga, T. A., Ogbole, J. O., Omolere, S., Alwadood, J., Kolawole, I. S., Muibi, K. H., Nnaemeka, D., Popoola, D. S., Samson, S. A., Adewoyin, J. E., Jesuleye, I., Badru, R. A., Atijosan, A., Ajileye, O. O., 2015. Flood Vulnerability Assessment of Ibadan City, Oyo State, Nigeria. World Environment 5(4), 149-159. https://doi.org/10.5923/j.env.20150504.03.  
Foody, G.M., E.M. Ghoniem & N.W. Arnell., 2004. Predicting locations sensitive to flash flooding in an arid environment. Journal of hydrology, (ARTICLIEN PRESS). https://doi.org/10.1016/j.jhydrol.2003.12.045.
Gashaw W, Legesse D., 2011. Flood hazard and risk assessment using GIS and remote sensing in Fogera Woreda, Northwest Ethiopia. Nile River Basin, pp.:179–206. https:// doi.org/ 10.1007/ 978-94-007-0689-7_9. 
Gaume E, Bain V, Bernardara P, Newinger O, Barbuc M, Bateman A, Viglione A., 2009. A compilation of data on European flash floods. J Hydrol 367(1-2):70–78 . https:// doi.org/ 10.1016/ j.jhydrol.2008.12.028.
Habibi, A., Firouzi Jahantighi, F., Sarafrazi, A., 2015. Fuzzy Delphi Technique for Forecasting and Screening Items. Asian Journal of Research in Business Economics and Management. Vol. 5, No. 2. PP. 130-143. https://doi.org/10.5958/2249-7307.2015.00036.5.  
Horton RE., 1945. Erosional development of streams and their drainage basins: hydrophysical approach to quantitative morphology. Bull Geol Soc Am 56:275–370. https:// doi.org/1 0.1130/ 0016-7606(1945)56[275:EDOSAT]2.0.CO;2
Huseyin, A., & Musteyde, B., 2020. Flash flood potential prioritization of sub-basins in an ungauged basin in Turkey using traditional multi-criteria decision-making methods. Springer-Verlag GmbH Germany, 1-13. https://doi.org/10.1007/s00500-020-04792-0.
Hyalmarson, H.W., 1988. Flood Hazard Zonation in Aridland. Wesley Publishers, 114 pp. http://onlinepubs.trb.org/Onlinepubs/trr/1988/1201/1201-001.pdf.
Jiann, L., & Gwo-Hshiung, T., 2011. An integrated MCDM technique combined with DEMATEL for a novel cluster-weighted with ANP method. Expert Systems with Applications, 1417-1424. https://doi.org/10.1016/j.eswa.2010.07.048.
John, F., J. England, Y. Pierre Julien and M.L. Velleux.,  2014. Physically-Based Extreme Flood Frequency with Stochastic Storm Transposition and Pale flood Data on large Watersheds.Journal of Hydrology, 510: 228-245. https:// doi.org/ 10.1016/ j.jhydrol. 2013. 12.021.
Jongman, B., Winsemius, H.C., Fraser, S.A., Muis, S., Ward, P.J., 2018. Assessment and adaptation to climate change-related flood risks. In: Oxford Research Encyclopedia of Natural Hazard Science. Oxford University Press. https:// doi.org/ 10.1093/ acrefore/ 9780199 389407. 013.278.
Kain, C.L., Rigby, E.H., Mazengarb, C., 2018. A combined morphometric, sedimentary, GIS and modelling analysis of flooding and debris flow hazard on a composite alluvial fan, Caveside, Tasmania. Sedimentary Geology, 364: 286-301. https:// doi.org/ 10.1016/ j. sedgeo .2017.10.005.
Kanani-Sadat, Y., Arabsheibani, R., Karimipour, F., Nasseri, M., 2019. A new approach to flood susceptibility assessment in data-scarce and ungauged regions based on GIS-based hybrid multi criteria decision-making method. J. Hydrol. 572, 17–31. https:// doi.org/ 10.1016/ j. jhydrol .2019.02.034
Khosravi, K., Nohani, E., Maroufinia, E., Pourghasemi, H.R., 2016. A GIS-based flood susceptibility assessment and its mapping in Iran: a comparison between frequency ratio and weights-of-evidence bivariate statistical models with multi-criteria decision-making technique. Nat. Hazards 83, 947–987. https://doi.org/10.1007/s11069-016-2357-2.
Khosravi, K., Shahabi, H., Pham, B.T., Adamowski, J., Shirzadi, A., Pradhan, B., Dou, J., Ly, H.-B., Gr´of, G., Ho, H.L., Hong, H., Chapi, K., Prakash, I., 2019. A comparative assessment of flood susceptibility modelling using Multi-Criteria Decision-Making Analysis and Machine Learning Methods. J. Hydrol. 573, 311–323. https://doi.org/10.1016/j.jhydrol.2019.03.073.
Kourgialas, N. N., & Karatzas, G. P., 2011. Flood management and a GIS modelling method to assess flood-hazard areas-a case study. Hydrological Sciences Journal–Journal des Sciences Hydrologiques,56(2), 212-225. https://doi.org/10.1080/02626667.2011.555836.
Liang,S. and C.R.C.Mohanty., 1997.Optimization of GIS-Based Flood Hazard Zoning a Case Study at the Mahanady Command Area in Cuttack District, Orrisa, India.Journal of Chinese Soil and Water Conservation,28:11-20. https:// www.sid.ir/ en/ Journal/ ViewPaper. aspx? ID=215539.
Liuzzo, L., Sammartano, V., Freni, G., 2019. Comparison between different distributed methods for flood susceptibility mapping. Water Resour. Manag. 33, 3155–3173. https:// doi.org/ 10.1007/ s11269 -019-02293-w.
Maggioni, V., Massari, C., 2018. On the performance of satellite precipitation products in riverin flood modeling: A review. Journal of Hydrology, 558: 214-224. https:// doi.org/ 10.1016/ j.jhydrol. 2018.01.039.
Marchesini, I., Salvati, P., Rossi, M., Donnini, M., Sterlacchini, S., & Guzzetti, F., 2021. Data-driven flood hazard zonation of Italy. Journal of Environmental Management, 294(May), 112986. https://doi.org/10.1016/j.jenvman.2021.112986.
Mohseni, M. and Soleimani, K., 2010. Flood Hazard Zonation Using Hydrolic Model of HEC-RAS in GIS, Natural Hazards Management, GIS Development Publication, Canada.
Papaioannou, G., Vasiliades, L., Loukas, A., 2015. Multi-criteria analysis framework for potential flood prone areas mapping. Water Resour. Manag. 29, 399–418.
Rahmati, O., Zeinivand, H., Besharat, M., 2016b. Flood hazard zoning in Yasooj region, Iran, using GIS and multi-criteria decision analysis. Geomatics, Nat. Hazards Risk 7, 1000–1017. https://doi.org/10.1080/19475705.2015.1045043.
Rai PK, Mohan K., 2014. Remote sensing data & GIS for flood risk zonation mapping in Varanasi District, India. Forum Geografic.13(1):25–33. http:// dx.doi.org/ 10.5775/ fg.2067-4635. 2014. 041.i.
Saaty TL., 2005. Theory and applications of the analytic network. RWS Publications, Pittsburgh, 491-502.
Saaty, T., 1980. The analytic hierarchy process. New York: McGraw-Hill. https:// doi.org/ 10.1504/ IJSSCI. 2008. 017590          
Saaty, T., 1996. Decision making with dependence and feedback: Analytic network process. Pittsburgh: RWS Publications.
Sahana, M., Patel, P.P., 2019. A comparison of frequency ratio and fuzzy logic models for flood susceptibility assessment of the lower Kosi River Basin in India. Environ. Earth Sci. 78, 289. http:// dx.doi.org/ 10.1007/ s12665- 019-8285-1
Shadmehri Toosi, A., Calbimonte, G. H., Nouri, H., & Alaghmand, S ., 2019 . River basin-scale flood hazard assessment using a modified multi-criteria decision analysis approach: A case study. Journal of Hydrology, 574, 660–671. https://doi.org/10.1016/j.jhydrol.2019.04.072
Singh AP, Arya AK, Singh DS., 2020a. Morphometric analysis of Ghaghara River basin, India, using SRTM data and GIS. J Geol Soc India 95(2):169–178. https://doi.org/10.1007/s12594-020-1406-3
Singh K, Arya AK, Agarwal KK., 2020b. Landslide occurrences along lineaments on NH-154A, Chamba, Himachal Pradesh; extracted from Satellite Data Landsat 8, India. J Indian Soc Remote Sens 48(5):791–803. https://doi.org/10.1007/s12524-020-01113-8.
Souissi, D., Zouhri, L., Hammami, S., Msaddek, M. H., Zghibi, A., & Dlala, M., 2020. GIS-based MCDM–AHP modeling for flood susceptibility mapping of arid areas, southeastern Tunisia. Geocarto International, 35(9), 991–1017. https:// doi.org/ 10.1080/ 10106049 .2019. 1566405
Stamy T.C. and Hess, G.W., 1993. Techniques for Estimating Magnitude and Frequency of Floods in Rural Basins in Georgia, Water Resources Investigation Report, 93- 4016, USGS Publication, USA. https://doi.org/10.3133/wri934016 .
Stefanidis S, Stathis D., 2013. Assessment of flood hazard based on natural and anthropogenic factors using analytic hierarchy process (AHP). Nat Hazards 68(2):569–585. https://doi.org/10.1007/s11069-013-0639-5.
Thilagavathi, G., Tamilenthi, S., Ramu, C. and Baskaran, R., 2011. Application of GIS in Flood Hazard Zonation Studies in Papanasam Taluk, Thanjavur District, Tamilnadu, Advances in Applied Science Research, Vol. 2, No. 3, PP. 574-585. https:// www.primescholars.com/ abstract/ application-of-gis- in-flood-hazard-zonation-studies-in-papanasam-taluk-thanjavur-district-tamilnadu-89057.html
Vojtek, M., Vojtekov´a, J., 2019. Flood susceptibility mapping on a national scale in Slovakia using the analytical Hierarchy process. Water 11, 364. https://doi.org/10.3390/w11020364
Wang, Y., Hong, H., Chen, W., Li, S., Panahi, M., Khosravi, K., Shirzadi, A., Shahabi, H., Panahi, S., Costache, R., 2019b. Flood susceptibility mapping in Dingnan County (China) using adaptive neuro-fuzzy inference system with biogeography-based optimization and imperialistic competitive algorithm. J. Environ. Manag. 247, 712–729. https:// doi.org/ 10.1016/ j.jenvman. 2019.06.102
 
CAPTCHA Image