Dynamic Analysis of Flood Risk using HEC-RAS Hydraulic Model (Case Study: Shahinshahr River, Isfahan Province)

Document Type : Research Article

Authors

1 Expert in River Engineering, Navandish Water Processors Consulting Engineers Company, Kurdistan, Iran

2 aDepartment of Physical Geography, Shahid Beheshti University, Tehran, Iran

3 MSc in Surveying (Remote Sensing), Faculty of Civil Engineering, University of Kurdistan, Kurdistan, Iran

Abstract

Flooding is a natural phenomenon and the risk of its occurrance in urban areas is a global issue. Rapid urbanization and climate changes have increased the risk of urban flooding, leading to massive infrastructure and human losses. The aim of this study was geomorphological zoning of Shahinshahr River flood risk. Therefore, the HEC-RAS numerical model was used to simulate the flood. The geometric data was processed in GIS by HEC–GEORAS extension. The return periods of 25, 50, and 100 years of catchment area as well as its physiographic characteristics including area, length of main stream, CN curve number, concentration time, latency in the watershed were entered into the HEC-HMS software. Accordingly, the maximum flood discharge with different return periods were calculated whereby the river area was devided into three reaches. Finally, manning's roughness coefficient was calculated for each reach that the Manning roughness coefficient was calculated using the Coon method. The results show that the flood zone in the 25-year return period includes 0.948  km2, 1.13 km2 in the 50-year return period, and 1.34 km2 of the lands along the Shahinshahr River in the 100-year return period. In the last reach, due to the reduction of the slope and the flow velocity, the flood zone has become wider than other periods.

Graphical Abstract

Dynamic Analysis of Flood Risk using HEC-RAS Hydraulic Model (Case Study: Shahinshahr River, Isfahan Province)

Keywords


پناهی، رؤیا؛ حسین زاده، محمدمهدی؛ 1400. پهنه‌بندی و تحلیل ژئومورفولوژیکی سیلاب رودخانه دینور (استان کرمانشاه) با استفاده از مدل هیدرولیکیHEC-RAS. جغرافیا و مخاطرات محیطی، شمارۀ سی و ششم. صص 45 -64.
پور نبی درزی، سمیه؛ وفاخواه، مهدی؛ رجبی، رسول؛ 1400. پهنه‌بندی سیل با استفاده از مدل هیدرولیکی HEC-RAS و GIS ، (مطالعه موردی: حوزه آبخیز چشمه کیله شهرستان تنکابن). مجله علمی پژوهشی مخاطرات محیط طبیعی. دوره دهم. شماره بیست و هشتم. صص 15-28.
حسین زاده، محمدمهدی؛ اسماعیلی، رضا؛ 1394. ژئومورفولوژی رودخانه­ای، مفاهیم اشکال و فرایند­ها. چاپ اول. تهران: مرکز چاپ و انتشارات دانشگاه شهید بهشتی.
دامادی، سکینه؛ دهواری، عبدالحمید؛ دهمرده قلعه نو، محمدرضا؛ ابراهیمیان، محبوبه؛ 1399. پهنه­بندی سیلاب با استفاده از مدل هیدرولیکی (HEC-RAS) در رودخانه سرباز استان سیستان و بلوچستان. نشریه علمی- پژوهشی مهندسی و مدیریت آبخیز، جلد 13. شماره 3. صص 590 – 610.
روستایی، شهرام؛ ایاسه، فریبا؛ رضایی مقدم، محمد. حسین؛ 1399. شبیه‌سازی دو بعدی سیلاب رودخانه لیقوان با تأکید بر دشت سیلابی. پژوهش­های ژئومورفولوژی کمی. سال نهم. شماره 1. صص 41 -28.
magiran.com/p2149697
ریاحی مدوار، حسین؛ فکوری، بهمن؛ 1400. تحلیل عدم قطعیت نتایج مدل  HEC-RAS در شبیه‌سازی فراسنجه­ای هیدرولیکی جریان رودخانه کارون با رویکرد مونت‌کارلو. نشریه هیدرولیک انجمن هیدرولیک ایران. دوره 16. شماره 1. صص 1-22.                                  https://dx.doi.org/10.30482/jhyd.2021.253266.1483
شفیعی، خسرو؛ عبادتی، ناصر؛ 1399. پهنه­بندی سیلاب و شبیه­سازی رفتار هیدرولیک رودخانه با استفاده از نرم‌افزار (HEC-RAS مطالعه موردی رودخانه مارون – جنوب غرب ایران). مجله اکوهیدرولوژی. دوره 7. شماره 2. صص 397 – 409.                                         https://dx.doi.org/10.22059/ije.2020.298473.1293
علیزاده، امین؛ 1388. اصول هیدرولوژی کاربردی. چاپ بیست و هفتم. مشهد: انتشارات دانشگاه امام رضا (ع).
مختاری، داود؛ رضایی مقدم، محمدحسین؛ معزز، سمیه؛ 1400. تحلیل دینامیکی مخاطره سیلاب در مخروط افکنه­های فعال با استفاده از مدل هیدرودینامیکی HEC-RAS و تکنیکGIS  مطالعه موردی: مخروط افکنه لیلان، شمال غرب ایران. پژوهش‌های ژئومورفولوژی کمّی. سال نهم. شماره 4. صص 169-185.
 
Abderrezzak, k.e.k., Paquier, A., and E. Mignot., 2009. Modelling flash flood propagation in urban areas using a two-dimensional numerical model. Natural Hazards, 50: 433–460. https://doi.org/10.1007/s11069-008-9300-0
Avand, M.T., Moradi, H.R., and M, Ramazanzadeh., 2021. Spatial modeling of flood probability using geo-environmental variables and machine learning models, case study: Tajan watershed, Iran. Advances in Space Research, 67: 3169-3186. https://doi.org/10.1016/j.asr.2021.02.011
Brierley, G,L., and Fryirs, K., 2005. geomorphology and river management application of the river style framework. Blackwell Publishing, Malden. MA. pp 398. DOI:10.1002/ 9780470751367
Brunner, G.W., 2001. HEC-RAS River Analysis System: User's Manual. US Army Corps of Engineers, Institute for Water Resources. Hydrologic Engineering Center.
Chang, H.S., Chen, T.L., 2016. Spatial heterogeneity of local flood vulnerability indicators within flood prone areas in Taiwan. Environmental Earth Sciences, 75(23): 1-14. https://doi.org/ 10.1007/s12665-016-6294-x
Clarke, S.E., Burnett, K.M., and D.J. Miller., 2008. Modeling Streams and Hydrogeomorphologic Attributes in Oregon from Digital and Field Data. Journal of the American Water Resources Association (JAWRA), 44:  459-477.DOI:10.1111/j.1752-1688.2008.00175.x
COON, W.F., 1996. Estimates of Roughness Coefficients for Selected Natural Stream Channels with Vegetated Banks in New York. U.S. DEPARTMENT OF THE INTERIOR BRUCE BABBITT, Secretary. https://doi.org/10.3133/ofr93161
Ezz, H., 2018. Integrating GIS and HEC-RAS to model Assiut plateau runoff. The Egyptian Journal of Remote Sensing and Space Sciences, 2: 219 -227. https:// doi.org/ 10.1016/ j.ejrs.2017.11.002
Ezzine, A., Saidi, S., Hermassi, T., Kammessi, I., Darragi, F., Rajhi, H., 2020. Flood mapping using hydraulic modeling and Sentinel-1 image: Case study of Medjerda Basin, northern Tunisia: The Egyptian. Journal of Remote Sensing and Space Sciences, 23: 303-310. https://doi.org/10.1016/j.ejrs.2020.03.001
Geravand, F., Hosseinia, SM., Ataie-Ashtiani, B., 2020. Influence of river cross-section data resolution on flood inundation modeling: Case study of Kashkan river basin in western Iran. Journal of Hydrology, 584: 124743. https://doi.org/10.1016/j.jhydrol.2020.124743
Ibrahimkhan, P.A., Agnihotri, P.G., 2021. Application of new HEC‑RAS version 5 for 1D hydrodynamic flood modeling with special reference through geospatial techniques: a case of River Purna at Navsari, Gujarat, India. Modeling Earth Systems and Environment, 7:1133–1144. https://doi.org/10.1007/s40808-020-00961-0
Khosravi, K.h., Panahi, M., Golkarian, A., Keesstra, S.D., Saco, P.M., Tien, B.D., Lee, S., 2021. Convolutional neural network approach for spatial prediction of flood hazard at national scale of Iran. Journal of Hydrology, 591: 2-35. https://doi.org/10.1016/j.jhydrol.2020.125552
Khosravi, K.h., Pham, B.T., Chapi, K., Shirzadi, A., Shahabi, H., Revhaug, I., Prakash, I., Tien Bui, D., 2018. A comparative assessment of decision trees algorithms for flash flood susceptibility modeling at Haraz watershed, northern Iran. Science of The Total Environment, 627: 744-755. https://doi.org/10.1016/j.scitotenv.2018.01.266
Pietron, J., Jarsjo, J., Romanchenko, A.O., Chalov, SR., 2015. Model analyses of the contribution of in-channel processes to sediment concentration hysteresis loops. Journal of Hydrology, 527: 576-589. https://doi.org/10.1016/j.jhydrol.2015.05.009
S.C.S. (SCS)., 1972. National Engineering Handbook, Section 4: Hydrology, Washington, DC.
Termeh, S.V.R., Kornejady, A., Pourghasemi, H.R., Keesstra, S., 2018. Flood susceptibility mapping using novel ensembles of adaptive neuro fuzzy inference system and metaheuristic algorithms. Science of the Total Environment, 615: 438-451. https:// doi.org/ 10.1016/ j. scitotenv. 2017.09.262 
Yerramilli, S.A., 2012. Hybrid Approach of Integrating HEC-RAS and GIS Towards the Identification and Assessment of Flood Risk Vulnerability in the City of Jackson, MS. American Journal of Geographic Information System, 1(1): 7-16. https:// doi.org/ 10.5923/ j.ajgis.20120101.02
Yousefi, S., Pourghasemi, H.R., Rahmati, O., Keesstra, S.D., Emami, S.N., Hooke, J., 2021. Geomorphological change detection of an urban meander loop caused by an extreme flood using remote sensing and bathymetry measurements (a case study of Karoon River, Iran). Journal of Hydrology, 597: 2-34. https://doi.org/10.1016/j.jhydrol.2020.125712
Zelenakova, M., Fijko, R., Labant, S., Weiss, E., Markovic, G., Weiss, R., 2019. Flood risk modelling of the Slatvinec stream in Kru _ zlov village, Slovakia. Journal of Cleaner Production, 212:109-118. https://doi.org/10.1016/j.jclepro.2018.12.008
 
 
CAPTCHA Image