The Effect of Morphometry Indices on Improving the Performance of Data Mining Models for Landslide Sensitivity Zoning in Cherikabad Watershed, Urmia

Document Type : Research Article

Authors

1 PhD Candidate in Watershed Management, Department of Range and Watershed Management, Urmia University, Urmia, Iran

2 Associate Professor, Department of Range and Watershed Management, Urmia University, Urmia, Iran

Abstract

The purpose of this study was to evaluate the performance of two data mining models; artificial neural network and vector support machine algorithm in three modes: Using morphometric indices including topographic wetness index, topographic position index, stream power index, length slope index, terrain ruggedness index, mass balance index, profile curvature index and surface curvature index‌; Using environmental and human factors including rainfall, basin height, slope, slope direction, lithology, land use, normalized vegetation difference index, distance from stream, distance from road, and distance from fault; And a combination of the above two conditions in zoning the landslide sensitivity of the Cherikabad watershed in Urmia. For this purpose, 92 landslide points in the watershed were identified using field study and Google Earth images. The map of morphometric indices and maps of environmental and human factors were prepared and digitized in ArcGIS10.5. The evaluation results of the two models using the ROC curve showed that in the case of using only morphometric indices, the two models SVM and ANN with the area under the curve of 0.742 and 0.763, respectively, have good performance in landslide sensitivity zoning. In the case of using human and environmental factors, the above two models with an area under the curve of 0.876 and 0.929 have good and very good performance, respectively; and in the case of using both human and environmental factors along with morphometric indices, the two models with an area under the curve of 0.940 and 0.936 had almost the same performance with excellent rank in the zoning of sensitive areas. Moreover, the highest quality­ sum (Qs) and Density ratio (Dr) had the highest correlation between risk categories for the SVM model in the third case. The results of Kappa index in the superior state showed that lithology, LS, and basin height factors had the greatest effect on the occurrence of landslides, respectively. Therefore, the effects of natural factors in comparison with human factors, and in general, the morphometric indices are higher in the occurrence of landslides than environmental and human factors, and the basin is inherently sensitive to landslides.

Graphical Abstract

The Effect of Morphometry Indices on Improving the Performance of Data Mining Models for Landslide Sensitivity Zoning in Cherikabad Watershed, Urmia

Keywords


احمدآبادی، علی؛ رحمتی، مریم؛ 1394. کاربرد شاخص‌های کمّی ژئومورفومتریک در شناسایی پهنه‌های مستعد زمین‌لغزش با استفاده از مدل‌SVM، مطالعه موردی: آزادراه خرم‌آباد_پل‌زال. پژوهش‌های ژئومورفولوژی کمّی. سال 3. شماره 4. صفحات 197-213.
حنیفی‌نیا، عبدالعزیز؛ نظرنژاد، حبیب؛ نجفی، سعید؛ کرنژادی، آیدینگ؛ 1399. اولویت‌بندی عامل‌های مؤثر بر وقوع زمین‌لغزش و پهنه‌بندی حساسیت آن در آبخیز چریک‌آباد ارومیه با استفاده از مدل آنتروپی شانون.­ پژوهش‌های آبخیزداری. دوره 33. شماره 4. 32-48.
حنیفی‌نیا، عبدالعزیز؛ نظرنژاد، حبیب؛ نجفی، سعید؛ کرنژادی، آیدینگ؛ 1398. پهنه‌بندی حساسیت زمین‌لغزش با استفاده از مدل فرایند سلسله مراتبی در حوزه آبخیز چریک‌آباد ارومیه. چهاردهمین همایش ملی علوم و مهندسی آبخیزداری ایران. 25 و 26 تیر ماه 1398.
شیرانی، کورش؛ سیف، عبدالله؛ 1390. پهنه‌بندی خطر زمین‌لغزش با استفاده از روش‌های آماری (منطقه پیشکوه، شهرستان فریدون‌شهر). علوم زمین. دوره 22. شماره 85. 149-158.
صمدی، میثم؛ جلالی، سعیده؛ قشلاقچایی، محمود؛ کرنژادی، آیدینگ؛ 1395. بررسی شاخص‌های مورفومتری در حوزه آبخیز چهل‌چای استان گلستان با استفاده از .GIS مهندسی نقشه‌برداری و اطلاعات مکانی. دوره 7. شماره 4. 37-48.
عبادی، فؤاد؛ ایلدرمی، نوری؛ بابائی، خالد؛ 1398. پهنه‌بندی خطر زمین‌لغزش در آبخیز سد چراغ ویس کردستان با مدل‌هایIRAT  و­LNRF. پژوهش‌های آبخیزداری. پیاپی 32. شماره 3. 37-52.
­عرب‌عامری، علیرضا؛ رضایی، خلیل؛ سهرابی، مسعود؛ شیرانی، کورش؛ 1397. ارزیابی کارایی پارامترهای کمی ژئومورفومتریک در افزایش صحت نقشه‌های پهنه بندی حساسیت زمین‌لغزش (مطالعه موردی: حوضه فریدون شهر، استان اصفهان)­. پ‍‍ژوهشنامه مدیریت حوزه آبخیز. شماره 18. جلد 9. 220-232.
کرمی، فریبا؛ بیاتی خطیبی، مریم؛ خیری‌زاده، منصور؛ مختاری اصل، ابوالفضل؛1398. ارزیابی کارایی الگوریتم ماشین بردار پشتیبان در پهنه‌بندی حساسیت زمین‌لغزش حوضه آبریز اهرچای. جغرافیا و مخاطرات محیطی. دوره 8. شماره 32. 1-17.
میرزانیا، صالح؛ شهابی، هیمن؛ 1398. ارزیابی و پیش‌بینی مکانی مخاطرۀ زمین‌لغزش در جادۀ کوهستانی سنندج-کامیاران با استفاده از الگوریتم‌های پیشرفتۀ داده‌کاوی. مدیریت مخاطرات محیطی. دوره 6. شماره 4. 317-340.
نوجوان، محمد­رضا؛ شاه‌زیدی، سمیه‌سادات؛ داودی، محمود؛ امین رعایا، هاجر؛ 1398. پهنه بندی خطر زمین‌لغزش با استفاده از تلفیق دو مدل فرآیند تحلیل سلسله مراتبی و فازی (مطالعه موردی: حوضه آبخیز کمه، استان اصفهان). پژوهش­های ژئومورفولوژی کمّی. دوره 7. شماره 4. صفحات 142-159.
 
Aditian A, Kubota T, Shinohara Y. 2018. Comparison of GIS-based landslide susceptibility models using frequency ratio, logistic regression, and artificial neural network in a tertiary region of Ambon, Indonesia, Geomorphology 318: 101-111.
Arnone E, Francipane A, Noto LV, Scarbaci A, La Loggia G. 2014. Strategies investigation in using artificial neural network for landslide susceptibility mapping: application to a Sicilian catchment, Journal of Hydroinformatics 16(2): 502-515.
Ben-Hur Asa, Horn David, Siegelmann Hava, Vapnik Vladimir N. 2001. Support vector clustering, Journal of Machine Learning Research 2: 125–137.
Boser BE, Guyon IM, Vapnik VN. 1992. A training algorithm for optimal margin classifiers. Proceedings of the fifth annual workshop on Computational learning theory– COLT '92. p. 144. CiteSeerX 10.1.1.21.3818.
Bragagnolo L, da Silva R­V, Grzybowski JMV. 2020. Landslide susceptibility mapping with r. landslide: A free open-source GIS-integrated tool based on Artificial Neural Networks, Environmental Modelling & Software 123, 104565.
Cama M, Conoscenti C, Lombardo L, Rotigliano, E. 2016. Exploring relationships between grid cell size and accuracy for debris-flow susceptibility models: a test in the Giampilieri catchment (Sicily, Italy), Environ. Earth Sci 75 (3): 1–21.
Carrara A, Crosta G, Frattini P. 2008. Comparing models of debris-flow susceptibility in the alpine environment. Geomorphology 94(3-4): 353-378.
Chen W, Pourghasemi HR, Kornejady A, Zhang N. 2017. Landslide spatial modeling: Introducing new ensembles of ANN, MaxEnt, and SVM machine learning techniques, Geoderma 305: 314-327.
Fang Z, Wang Y, Peng L, Hong H. 2020. Integration of convolutional neural network and conventional machine learning classifiers for landslide susceptibility mapping. Computers & Geosciences139, 104470.
Fell R, Corominas J, Bonnard C, Cascini L, Leroi E, Savage WZ. 2008. Guidelines for landslide susceptibility, hazard and risk zoning for land use planning, Engineering Geology 102(3): 85-98.
Gee, M. D. (1991). Classification of landslide hazard zonation methods and a test of predictive capability, Landslides, Bell, G., (ed.), Balkema, Rotterdam 947- 952.
Guha-Sapir D, Below R, Hoyois P. 2020. EM-DAT: international disaster database. Brussels, Belgium: Université Catholique de Louvain. Available from: http://www.emdat.be.
Guzzetti F, CesareMondini A, Cardinali M, Fiorucci F, Santangelo M, Chang KT. 2012. Landslide inventory maps: new tools for an old problem, EarthScience Review 112: 42-66.
Haghighat M, Abdel-Mottaleb M, Alhalabi W. 2016. Discriminant correlation analysis: Real-time feature level fusion for multimodal biometric recognition. IEEE Transactions on Information Forensics and Security, 11(9): 1984-1996.
Hong H, Pourghasemi HR, Pourtaghi, ZS. 2016. Landslide susceptibility assessment in Lianhua County (China): a comparison between a random forest data mining technique and bivariate and multivariate statistical models, Geomorphology 259: 105-118.
Hsieh CJ, Chang KW, Lin CJ, Keerthi SS, Sundararajan S. 2008. A dual coordinate descent method for large-scale linear SVM, In Proceedings of the 25th international conference on Machine learning (408-415).
Huang F, Cao Z, Guo J, Jiang SH, Li S, Guo Z. 2020. Comparisons of heuristic, general statistical and machine learning models for landslide susceptibility prediction and mapping, Catena 191, 104580.
Kavzoglu T, Kutlug Sahin E, Colkesen I. 2015. An assessment of multivariate and bivariate approaches in landslide susceptibility mapping: a case study of Duzkoy district, ORIGINAL PAPER 76:471–496.
Kirkos S, Manolopoulos Y. 2004. September. Data mining in finance and accounting: a review of current research trends, In Proceedings of the 1st international conference on enterprise systems and accounting (ICESAcc) 63-78 pp.‏
Lee S, Min K. 2001. Statistical analysis of landslide susceptibility at Yongin, Korea, Environmental Geology 40: 1095-1113.
Lucchese, L.‌V., de Oliveira GG, Pedrollo OC. 2021. Investigation of the influence of nonoccurrence sampling on landslide susceptibility assessment using Artificial Neural Networks, Catena 198, 105067.
Marjanović M, Kovačević M, Bajat B, Voženílek V. 2011. Landslide susceptibility assessment using SVM machine learning algorithm, Engineering Geology 123(3): 225-234.
Meyer D, Leisch F, Hornik K. 2003. The support vector machine under test, Neurocomputing 55(1-2): 169-186.
Möller M, Volk M, Friedrich K, Lymburner L. (2008). Placing soil-genesis and transport processes into a landscape context: A multiscale terrain-analysis approach, Journal of Plant Nutrition and Soil Science 171 (3): 419-430.
Moore ID, Grayson RB, Ladson AR. 1991. Digital terrain modeling: a review of hydrological, geomorphological, and biological applications, Hydro Process 5: 3-30.
Ocakoglu F, Gokceoglu C, Ercanoglu M. 2002. Dynamics of a complex mass movement triggered by heavy rainfall: a case study from NW Turkey, Geomorphology 42(3-4): 329-341.
Pontius JRG, Schneider LC. 2001. Land-cover change model validation by a ROC method for the Ipswich watershed, Massachusetts, USA, Agriculture, Ecosystems & Environment 85(1-3): 239-248.
Prasad R, Pandey A, Singh KP, Singh VP, Mishra RK, Singh D. 2012. Retrieval of spinach crop parameters by microwave remote sensing with back propagation artificial neural networks: A comparison of different transfer functions, Advances in space research 50(3): 363-370.
Press William H, Teukolsky SA, Vetterling WT, Flannery BP. 2007. Section 16.5. Support Vector Machines. Numerical Recipes: The Art of Scientific Computing (3rd ed.). New York: Cambridge University Press.
Rabby YW, Hossain MB, Abedin J. 2020. Landslide Susceptibility Mapping in Three Upazilas of Rangamati Hill District Bangladesh: Application and Comparison of GIS-based Machine Learning Methods, Geocarto International 1-24.
Roodposhti MS, Safarrad T­, Shahabi H. 2017. Drought sensitivity mapping using two one-class support vector machine algorithms, Atmospheric Research 193: 73-82.
Sarkar S, Kanungo DP, Mehrotra, GS. 1995. Landslide hazard zonation: a case study in Garhwal Himalaya, India, Mountain Research and Development 15(4): 301-309.
Schmidhuber J. 2015. "Deep Learning". Scholarpedia, 10 (11): 85–117.
Shahabi H, Khezri S, Ahmad BB, Hashim M. 2014. Landslide susceptibility mapping at central Zab basin, Iran: A comparison between analytical hierarchy process, frequency ratio and logistic regression models, Catena 115: 55-70.
Shalev-Shwartz S, Singer Y, Srebro N, Cotter A. 2011. Pegasos: Primal estimated sub-gradient solver for SVM, Mathematical programming 127(1): 3-30.
Tien Bui D, Pradhan B, Revhaug I, Trung TC. 2014. A comparative assessment between the application of fuzzy unordered rules induction algorithm and J48 decision tree models in spatial prediction of shallow landslides at Lang Son City, Vietnam, In Remote sensing applications in environmental research 87-111.
Vakhshoori V, Pourghasemi HR, Zare, M., & Blaschke, T. (2019. Landslide susceptibility mapping using GIS-based data mining algorithms, Water 11(11): 2292.
Xie W, Li X, Jian W, Yang Y, Liu H, Robledo LF, Nie W. 2021. A Novel Hybrid Method for Landslide Susceptibility Mapping-Based GeoDetector and Machine Learning Cluster: A Case of Xiaojin County, China, ISPRS International Journal of Geo-Information 10(2): 1-19.
Yalcin A. 2011. A geotechnical study on the landslides in the Trabzon Province, NE, Turkey, Applied clay science 52: 11-29.
Yu C, Chen J. 2020. Landslide Susceptibility Mapping Using the Slope Unit for Southeastern Helong City, Jilin Province, China: A Comparison of ANN and SVM, Symmetry 12(6): 10-47.
 
 
 
CAPTCHA Image